Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Cells ; 13(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39195225

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.


Assuntos
Comunicação Autócrina , Fibroblastos Associados a Câncer , Movimento Celular , Quimiocina CXCL12 , Neoplasias Colorretais , Células-Tronco Neoplásicas , Comunicação Parácrina , Receptores CXCR4 , Transdução de Sinais , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Invasividade Neoplásica , Camundongos , Microambiente Tumoral , Linhagem Celular Tumoral , Células HCT116 , Masculino , Feminino , Células HT29
2.
Anim Nutr ; 18: 27-38, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39026602

RESUMO

In nature, aflatoxins, especially aflatoxin B1 (AFB1), are the common mycotoxins, which cause serious health problems for humans and animals. This paper aimed to study the effects of AFB1 on flesh flavor and muscle development of grass carp (Ctenopharyngodon idella) and its mechanism. There were 1440 individual fish in total, with 6 treatments and each treatment replicated 3 times. The 6 treatments were fed a control diet with different doses of AFB1 (0.04, 29.48, 58.66, 85.94, 110.43 and 146.92 µg/kg diet) for 60 d. AFB1 increased myofiber diameter, as well as decreased myofiber density of grass carp muscle (P < 0.05). The contents of free amino acid decreased gradually (P < 0.05) as dietary AFB1 increased in the muscle of grass carp. The levels of reactive oxygen species, malonaldehyde and protein carbonyl (PC) were increased (P < 0.05) with the dietary AFB1 increased. The levels of antioxidant enzyme (glutathione peroxidase, glutathione, glutathione reductase, total antioxidant capacity, anti-superoxide anion, and anti-hydroxyl radical) were decreased (P < 0.05) with the dietary AFB1 increased. In addition, dietary AFB1 decreased the content of collagen, and downregulated the mRNA and protein levels of transforming growth factor-ß (TGF-ß)/Smads signaling pathway in grass carp muscle (P < 0.05). The mRNA and protein levels of myogenic regulatory factors were downregulated in grass carp muscle (P < 0.05). Furthermore, the activities of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) were increased (P < 0.05), and the protein levels of phosphorylate-38 mitogen-activated protein kinase (p-p38MAPK), phosphorylate-c-Jun N-terminal kinase, urokinase-type plasminogen activator (uPA), MMP-2 and MMP-9 were upregulated (P < 0.05), but collagen Ⅰ, laminin ß1 and fibronectin were downregulated (P < 0.05) with the dietary AFB1 increased in the muscle of grass carp. Based on the results of this study, we can draw the following conclusion: dietary AFB1 might damage flesh flavor and inhibit the muscle development through MAPK/uPA/MMP/extracellular matrix (ECM) signaling pathway in grass carp. Moreover, the recommended safe limit of AFB1 in feed is no more than 26.77 µg/kg diet according to the PC levels in grass carp muscle.

3.
Bioact Mater ; 39: 255-272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38832304

RESUMO

Osteoarthritis (OA) is a major clinical challenge, and effective disease-modifying drugs for OA are still lacking due to the complicated pathology and scattered treatment targets. Effective early treatments are urgently needed to prevent OA progression. The excessive amount of transforming growth factor ß (TGFß) is one of the major causes of synovial fibrosis and subchondral bone sclerosis, and such pathogenic changes in early OA precede cartilage damage. Herein we report a novel strategy of intra-articular sustained-release of pirfenidone (PFD), a clinically-approved TGFß inhibitor, to achieve disease-modifying effects on early OA joints. We found that PFD effectively restored the mineralization in the presence of excessive amount of TGFß1 (as those levels found in patients' synovial fluid). A monthly injection strategy was then designed of using poly lactic-co-glycolic acid (PLGA) microparticles and hyaluronic acid (HA) solution to enable a sustained release of PFD (the "PLGA-PFD + HA" strategy). This strategy effectively regulated OA progression in destabilization of the medial meniscus (DMM)- induced OA mice model, including preventing subchondral bone loss in early OA and subchondral bone sclerosis in late OA, and reduced synovitis and pain with cartilage preservation effects. This finding suggests the promising clinical application of PFD as a novel disease-modifying OA drug.

4.
J Orthop ; 53: 168-175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38633989

RESUMO

Background: Elastic band exercises can improve bone density, muscle quality, and body fat in elderly patients with Sarcopenic Obesity Syndrome (SOS), a common diagnosis. Encouraging this exercise can bring significant benefits. Methods: We conducted a comprehensive search until April 1, 2023, covering UpToDate, PubMed, and Web of Science databases. The analysis focused on osteosarcopenic obesity and resistance training, involving four randomized controlled trials with 108 participants. After collecting key information, the methodological quality was assessed using the PEDro scale. Outcome quality was graded using the GRADE technique, and bias risk was evaluated using the Cochrane Bias Risk tool. Statistical analysis was performed using Review Manager 5.4. Results: After a 12-week elastic band resistance training regimen, the meta-analysis revealed significant improvement. The study focused on age-related osteoporosis and obesity in older women, evaluating parameters such as bone mineral density (BMD) (P < 0.001, I2 = 98 %, CI: 0.39-0.71), decreased body fat percentage (BFP) (CI: -262.55-260.11, P < 0.001, I2 = 100 %), and skeletal muscle mass index (SMI) (P < 0.001, I2 = 98 %, CI: 0.31-0.71). T-score (P < 0.001, I2 = 97 %, CI: -2.85-1.27), Time to Chair Rise (TCR) (P < 0.001, I2 = 100 %, CI: -24.28-23.44), and Gait Speed (GS) (P < 0.001, I2 = 100 %, CI: 9.84-9.88) were also evaluated. Conclusion: Following a 12-week elastic band resistance exercise regimen, older women showed notable improvements, particularly those with age-related osteoporosis and obesity.

5.
PLoS One ; 19(4): e0296300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635518

RESUMO

OBJECTIVE: This study aimed to compare the stability and mechanical properties of the double chevron-cut (DCC) and biplanar (BP) distal femoral osteotomy (DFO) techniques, along with analyzing their respective contact surface areas. METHODS: Biomechanical testing was performed using sawbone and 3D modeling techniques to assess axial and torsional stability, torsional stiffness, and maximum torque of both osteotomy configurations. Additionally, 3D models of the sawbone femur were created to calculate and compare the contact surface area of the DCC, BP, and conventional single-plane DFO techniques. RESULTS: Axial stiffness and maximum strength did not significantly differ between the two osteotomy techniques. However, in terms of torsional properties, the DCC technique exhibited superior torsional stiffness compared to the BP group (27 ± 7.7 Nm/° vs. 4.5 ± 1.5 Nm/°, p = 0.008). Although the difference in maximum torque did not reach statistical significance (63 ± 10.6 vs. 56 ± 12.1, p = 0.87), it is noteworthy that the DCC group sawbone model exhibited fracture in the shaft region instead of at the osteotomy site. Therefore, the actual maximum torque of the DCC construct may not be accurately reflected by the numerical values obtained in this study. The contact surface area analysis revealed that the BP configuration had the largest contact surface area, 111% larger than that of the single-plane configuration. but 60% of it relied on the less reliable axial cut. Conversely, the DCC osteotomy offered a 31% larger contact surface area than the single-plane configuration, with both surfaces being weight-bearing. CONCLUSION: The DCC osteotomy exhibited superior mechanical stability, showing improved rotational stiffness and maximum torque when compared to the BP osteotomy. Although the BP osteotomy resulted in a larger contact surface area than the DCC osteotomy, both were larger than the conventional single-plane configuration. In clinical practice, both the DCC and BP techniques should be evaluated based on patient-specific characteristics and surgical goals.


Assuntos
Fraturas Ósseas , Osteotomia , Humanos , Osteotomia/métodos , Fêmur/cirurgia , Torque , Extremidade Inferior , Fenômenos Biomecânicos
6.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626608

RESUMO

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Assuntos
Aflatoxina B1 , Carpas , Proliferação de Células , Matriz Extracelular , Mioblastos , Espécies Reativas de Oxigênio , Animais , Aflatoxina B1/toxicidade , Mioblastos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
7.
Bioengineering (Basel) ; 11(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671820

RESUMO

BACKGROUND AND OBJECTIVE: Local advanced rectal cancer (LARC) poses significant treatment challenges due to its location and high recurrence rates. Accurate early detection is vital for treatment planning. With magnetic resonance imaging (MRI) being resource-intensive, this study explores using artificial intelligence (AI) to interpret computed tomography (CT) scans as an alternative, providing a quicker, more accessible diagnostic tool for LARC. METHODS: In this retrospective study, CT images of 1070 T3-4 rectal cancer patients from 2010 to 2022 were analyzed. AI models, trained on 739 cases, were validated using two test sets of 134 and 197 cases. By utilizing techniques such as nonlocal mean filtering, dynamic histogram equalization, and the EfficientNetB0 algorithm, we identified images featuring characteristics of a positive circumferential resection margin (CRM) for the diagnosis of locally advanced rectal cancer (LARC). Importantly, this study employs an innovative approach by using both hard and soft voting systems in the second stage to ascertain the LARC status of cases, thus emphasizing the novelty of the soft voting system for improved case identification accuracy. The local recurrence rates and overall survival of the cases predicted by our model were assessed to underscore its clinical value. RESULTS: The AI model exhibited high accuracy in identifying CRM-positive images, achieving an area under the curve (AUC) of 0.89 in the first test set and 0.86 in the second. In a patient-based analysis, the model reached AUCs of 0.84 and 0.79 using a hard voting system. Employing a soft voting system, the model attained AUCs of 0.93 and 0.88, respectively. Notably, AI-identified LARC cases exhibited a significantly higher five-year local recurrence rate and displayed a trend towards increased mortality across various thresholds. Furthermore, the model's capability to predict adverse clinical outcomes was superior to those of traditional assessments. CONCLUSION: AI can precisely identify CRM-positive LARC cases from CT images, signaling an increased local recurrence and mortality rate. Our study presents a swifter and more reliable method for detecting LARC compared to traditional CT or MRI techniques.

8.
PLoS One ; 19(1): e0296709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227590

RESUMO

This study examined 70 Klebsiella pneumoniae isolates derived from companion animals with urinary tract infections in Taiwan. Overall, 81% (57/70) of the isolates carried extended-spectrum ß-lactamase (ESBL) and/or plasmid-encoded AmpC (pAmpC) genes. ESBL genes were detected in 19 samples, with blaCTX-M-1, blaCTX-M-9, and blaSHV being the predominant groups. pAmpC genes were detected in 56 isolates, with blaCIT and blaDHA being the predominant groups. Multilocus sequence typing revealed that sequence types (ST)11, ST15, and ST655 were prevalent. wabG, uge, entB, mrkD, and fimH were identified as primary virulence genes. Two isolates demonstrated a hypermucoviscosity phenotype in the string test. Antimicrobial susceptibility testing exhibited high resistance to ß-lactams and fluoroquinolones in ESBL-positive isolates but low resistance to aminoglycosides, sulfonamides, and carbapenems. Isolates carrying pAmpC genes exhibited resistance to penicillin-class ß-lactams. These findings provide valuable insights into the role of K. pneumoniae in the context of the concept of One Health.


Assuntos
Infecções por Klebsiella , Infecções Urinárias , Animais , Klebsiella pneumoniae/genética , Enterobacteriaceae/genética , beta-Lactamases/genética , Proteínas de Bactérias/genética , Animais de Estimação , Antibacterianos/farmacologia , beta-Lactamas , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/veterinária , Infecções Urinárias/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/veterinária , Testes de Sensibilidade Microbiana
9.
Mol Ther Nucleic Acids ; 35(1): 102102, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38222299

RESUMO

Acute lung injury (ALI) is a life-threatening condition with limited treatment options. The pathogenesis of ALI involves macrophage-mediated disruption and subsequent repair of the alveolar barriers, which ultimately results in lung damage and regeneration, highlighting the pivotal role of macrophage polarization in ALI. Although exosomes derived from mesenchymal stromal cells have been established as influential modulators of macrophage polarization, the specific role of exosomal microRNAs (miRNAs) remains underexplored. This study aimed to elucidate the role of specific exosomal miRNAs in driving macrophage polarization, thereby providing a reference for developing novel therapeutic interventions for ALI. We found that miR-7704 is the most abundant and efficacious miRNA for promoting the switch to the M2 phenotype in macrophages. Mechanistically, we determined that miR-7704 stimulates M2 polarization by inhibiting the MyD88/STAT1 signaling pathway. Notably, intra-tracheal delivery of miR-7704 alone in a lipopolysaccharide-induced murine ALI model significantly drove M2 polarization in lung macrophages and remarkably restored pulmonary function, thus increasing survival. Our findings highlight miR-7704 as a valuable tool for treating ALI by driving the beneficial M2 polarization of macrophages. Our findings pave the way for deeper exploration into the therapeutic potential of exosomal miRNAs in inflammatory lung diseases.

10.
Cytotherapy ; 25(11): 1155-1166, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37715776

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are recognized as a potential cell-based therapy for regenerative medicine. Short-term inflammatory cytokine pre-stimulation (cytokine priming) is a promising approach to enhance regenerative efficacy of MSCs. However, it is unclear whether their intrinsic heterogenic nature causes an unequal response to cytokine priming, which might blunt the accessibility of clinical applications. METHODS: In this study, by analyzing the single-cell transcriptomic landscape of human bone marrow MSCs from a naïve to cytokine-primed state, we elucidated the potential mechanism of superior therapeutic potential in cytokine-primed MSCs. RESULTS: We found that cytokine-primed MSCs had a distinct transcriptome landscape. Although substantial heterogeneity was identified within the population in both naïve and primed states, cytokine priming enhanced the several characteristics of MSCs associated with therapeutic efficacy irrespective of heterogeneity. After cytokine-priming, all sub-clusters of MSCs possessed high levels of immunoregulatory molecules, trophic factors, stemness-related genes, anti-apoptosis markers and low levels of multi-lineage and senescence signatures, which are critical for their therapeutic potency. CONCLUSIONS: In conclusion, our results provide new insights into MSC heterogeneity under cytokine stimulation and suggest that cytokine priming reprogrammed MSCs independent of heterogeneity.


Assuntos
Citocinas , Células-Tronco Mesenquimais , Humanos , Análise da Expressão Gênica de Célula Única , Transcriptoma , Perfilação da Expressão Gênica
11.
Stem Cell Res Ther ; 14(1): 195, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542297

RESUMO

BACKGROUND: High dosage of dexamethasone (Dex) is an effective treatment for multiple diseases; however, it is often associated with severe side effects including muscle atrophy, resulting in higher risk of falls and poorer life quality of patients. Cell therapy with mesenchymal stem cells (MSCs) holds promise for regenerative medicine. In this study, we aimed to investigate the therapeutic efficacy of systemic administration of adipose-derived mesenchymal stem cells (ADSCs) in mitigating the loss of muscle mass and strength in mouse model of DEX-induced muscle atrophy. METHODS: 3-month-old female C57BL/6 mice were treated with Dex (20 mg/kg body weight, i.p.) for 10 days to induce muscle atrophy, then subjected to intravenous injection of a single dose of ADSCs ([Formula: see text] cells/kg body weight) or vehicle control. The mice were killed 7 days after ADSCs treatment. Body compositions were measured by animal DXA, gastrocnemius muscle was isolated for ex vivo muscle functional test, histological assessment and Western blot, while tibialis anterior muscles were isolated for RNA-sequencing and qPCR. For in vitro study, C2C12 myoblast cells were cultured under myogenic differentiation medium for 5 days following 100 [Formula: see text]M Dex treatment with or without ADSC-conditioned medium for another 4 days. Samples were collected for qPCR analysis and Western blot analysis. Myotube morphology was measured by myosin heavy chain immunofluorescence staining. RESULTS: ADSC treatment significantly increased body lean mass (10-20%), muscle wet weight (15-30%) and cross-sectional area (CSA) (~ 33%) in DEX-induced muscle atrophy mice model and down-regulated muscle atrophy-associated genes expression (45-65%). Hindlimb grip strength (~ 37%) and forelimb ex vivo muscle contraction property were significantly improved (~ 57%) in the treatment group. Significant increase in type I fibres (~ 77%) was found after ADSC injection. RNA-sequencing results suggested that ERK1/2 signalling pathway might be playing important role underlying the beneficial effect of ADSC treatment, which was confirmed by ERK1/2 inhibitor both in vitro and in vivo. CONCLUSIONS: ADSCs restore the pathogenesis of Dex-induced muscle atrophy with an increased number of type I fibres, stronger muscle strength, faster recovery rate and more anti-fatigue ability via ERK1/2 signalling pathway. The inhibition of muscle atrophy-associated genes by ADSCs offered this treatment as an intervention option for muscle-associated diseases. Taken together, our findings suggested that adipose-derived mesenchymal stem cell therapy could be a new treatment option for patient with Dex-induced muscle atrophy.


Assuntos
Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Atrofia Muscular/terapia , Atrofia Muscular/tratamento farmacológico , Músculo Esquelético/metabolismo , Células-Tronco Mesenquimais/metabolismo , Dexametasona/efeitos adversos , Peso Corporal , RNA/metabolismo
12.
Neural Netw ; 165: 119-134, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285729

RESUMO

Deep learning (DL) applied to breast tissue segmentation in magnetic resonance imaging (MRI) has received increased attention in the last decade, however, the domain shift which arises from different vendors, acquisition protocols, and biological heterogeneity, remains an important but challenging obstacle on the path towards clinical implementation. In this paper, we propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation (MSCDA) framework to address this issue in an unsupervised manner. Our approach incorporates self-training with contrastive learning to align feature representations between domains. In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts to better exploit the underlying semantic information of the image at different levels. To resolve the data imbalance problem, we utilize a category-wise cross-domain sampling strategy to sample anchors from target images and build a hybrid memory bank to store samples from source images. We have validated MSCDA with a challenging task of cross-domain breast MRI segmentation between datasets of healthy volunteers and invasive breast cancer patients. Extensive experiments show that MSCDA effectively improves the model's feature alignment capabilities between domains, outperforming state-of-the-art methods. Furthermore, the framework is shown to be label-efficient, achieving good performance with a smaller source dataset. The code is publicly available at https://github.com/ShengKuangCN/MSCDA.


Assuntos
Neoplasias da Mama , Semântica , Humanos , Feminino , Imageamento por Ressonância Magnética , Neoplasias da Mama/diagnóstico por imagem , Voluntários Saudáveis , Processamento de Imagem Assistida por Computador
13.
J Cachexia Sarcopenia Muscle ; 14(3): 1349-1364, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076950

RESUMO

BACKGROUND: The progressive deterioration of tissue-tissue crosstalk with aging causes a striking impairment of tissue homeostasis and functionality, particularly in the musculoskeletal system. Rejuvenation of the systemic and local milieu via interventions such as heterochronic parabiosis and exercise has been reported to improve musculoskeletal homeostasis in aged organisms. We have shown that Ginkgolide B (GB), a small molecule from Ginkgo biloba, improves bone homeostasis in aged mice by restoring local and systemic communication, implying a potential for maintaining skeletal muscle homeostasis and enhancing regeneration. In this study, we investigated the therapeutic efficacy of GB on skeletal muscle regeneration in aged mice. METHODS: Muscle injury models were established by barium chloride induction into the hind limb of 20-month-old mice (aged mice) and into C2C12-derived myotubes. Therapeutic efficacy of daily administrated GB (12 mg/kg body weight) and osteocalcin (50 µg/kg body weight) on muscle regeneration was assessed by histochemical staining, gene expression, flow cytometry, ex vivo muscle function test and rotarod test. RNA sequencing was used to explore the mechanism of GB on muscle regeneration, with subsequent in vitro and in vivo experiments validating these findings. RESULTS: GB administration in aged mice improved muscle regeneration (muscle mass, P = 0.0374; myofiber number/field, P = 0.0001; centre nucleus, embryonic myosin heavy chain-positive myofiber area, P = 0.0144), facilitated the recovery of muscle contractile properties (tetanic force, P = 0.0002; twitch force, P = 0.0005) and exercise performance (rotarod performance, P = 0.002), and reduced muscular fibrosis (collagen deposition, P < 0.0001) and inflammation (macrophage infiltration, P = 0.03). GB reversed the aging-related decrease in the expression of osteocalcin (P < 0.0001), an osteoblast-specific hormone, to promote muscle regeneration. Exogenous osteocalcin supplementation was sufficient to improve muscle regeneration (muscle mass, P = 0.0029; myofiber number/field, P < 0.0001), functional recovery (tetanic force, P = 0.0059; twitch force, P = 0.07; rotarod performance, P < 0.0001) and fibrosis (collagen deposition, P = 0.0316) in aged mice, without an increased risk of heterotopic ossification. CONCLUSIONS: GB treatment restored the bone-to-muscle endocrine axis to reverse aging-related declines in muscle regeneration and thus represents an innovative and practicable approach to managing muscle injuries. Our results revealed the critical and novel role of osteocalcin-GPRC6A-mediated bone-to-muscle communication in muscle regeneration, which provides a promising therapeutic avenue in functional muscle regeneration.


Assuntos
Osso e Ossos , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/metabolismo , Osteocalcina/metabolismo , Osteocalcina/farmacologia , Osso e Ossos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Chin J Physiol ; 66(2): 55-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082993

RESUMO

Mesenchymal stem cells (MSCs) possess the capacity for self-renewal and multipotency. The traditional approach to manipulating MSC's fate choice predominantly relies on biochemical stimulation. Accumulating evidence also suggests the role of physical input in MSCs differentiation. Therefore, investigating mechanotransduction at the molecular level and related to tissue-specific cell functions sheds light on the responses secondary to mechanical forces. In this review, a new frontier aiming to optimize the cultural parameters was illustrated, i.e. spatial boundary condition, which recapitulates in vivo physiology and facilitates the investigations of cellular behavior. The concept of mechanical memory was additionally addressed to appreciate how MSCs store imprints from previous culture niches. Besides, different types of forces as physical stimuli were of interest based on the association with the respective signaling pathways and the differentiation outcome. The downstream mechanoreceptors and their corresponding effects were further pinpointed. The cardiovascular system or immune system may share similar mechanisms of mechanosensing and mechanotransduction; for example, resident stem cells in a vascular wall and recruited MSCs in the bloodstream experience mechanical forces such as stretch and fluid shear stress. In addition, baroreceptors or mechanosensors of endothelial cells detect changes in blood flow, pass over signals induced by mechanical stimuli and eventually maintain arterial pressure at the physiological level. These mechanosensitive receptors transduce pressure variation and regulate endothelial barrier functions. The exact signal transduction is considered context dependent but still elusive. In this review, we summarized the current evidence of how mechanical stimuli impact MSCs commitment and the underlying mechanisms. Future perspectives are anticipated to focus on the application of cardiovascular bioengineering and regenerative medicine.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais , Mecanotransdução Celular/fisiologia , Células Endoteliais , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Diferenciação Celular/fisiologia , Hemodinâmica
15.
Sci Total Environ ; 878: 163170, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37003331

RESUMO

The prevalence of aflatoxin B1 (AFB1), one of the most toxic mycotoxins that contaminates feedstock and food is increasing worldwide. AFB1 can cause various health problems in humans and animals, as well as direct embryotoxicity. However, the direct toxicity of AFB1 on embryonic development, especially foetal foetus muscle development, has not been studied in depth. In the present study, we used zebrafish embryos as a model to study the mechanism of the direct toxicity of AFB1 to the foetus, including muscle development and developmental toxicity. Our results showed that AFB1 caused motor dysfunction in zebrafish embryos. In addition, AFB1 induces abnormalities in muscle tissue architecture, which in turn causes abnormal muscle development in larvae. Further studies found that AFB1 destroyed the antioxidant capacity and tight junction complexes (TJs), causing apoptosis in zebrafish larvae. In summary, AFB1 may induce developmental toxicity and inhibit muscle development through oxidative damage, apoptosis and disruption of TJs in zebrafish larvae. Our results revealed the direct toxicity effects of AFB1 on the development of embryos and larvae, including inhibition of muscle development and triggering neurotoxicity, induction of oxidative damage, apoptosis and disruption of TJs, and fills the gap in the toxicity mechanism of AFB1 on foetal development.


Assuntos
Aflatoxina B1 , Peixe-Zebra , Animais , Humanos , Aflatoxina B1/toxicidade , Larva , Apoptose , Estresse Oxidativo
16.
Aquat Toxicol ; 257: 106424, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863152

RESUMO

Aquafeeds are susceptible to contamination caused by aflatoxin B1 (AFB1). The gill of fish is an important respiratory organ. However, few studies have investigated the effects of dietary AFB1 exposure on gill. This study aimed to discuss the effects of AFB1 on the structural and immune barrier of grass carp gill. Dietary AFB1 increased reactive oxygen species (ROS) levels, protein carbonyl (PC) and malondialdehyde (MDA) contents, which consequently caused oxidative damage. In contrast, dietary AFB1 decreased antioxidant enzymes activities, relative genes expression (except MnSOD) and the contents of glutathione (GSH) (P < 0.05), which are partly regulated by NF-E2-related factor 2 (Nrf2/Keap1a). Moreover, dietary AFB1 caused DNA fragmentation. The relative genes of apoptosis (except Bcl-2, McL-1 and IAP) were significantly upregulated (P < 0.05), and apoptosis was likely upregulated through p38 mitogen-activated protein kinase (p38MAPK). The relative expressions of genes associated with tight junction complexes (TJs) (except ZO-1 and claudin-12) were significantly decreased (P < 0.05), and TJs were likely regulated by myosin light chain kinase (MLCK). Overall, dietary AFB1 disrupted the structural barrier of gill. Furthermore, AFB1 increased gill sensitivity to F. columnare, increased Columnaris disease and decreased the production of antimicrobial substances (P < 0.05) in grass carp gill, and upregulated the expression of genes involved with pro-inflammatory factors (except TNF-α and IL-8) and the pro-inflammatory response partly attributed to the regulation by nuclear factor κB (NF-κB). Meanwhile, the anti-inflammatory factors were downregulated (P < 0.05) in grass carp gill after challenge with F. columnare, which was partly attributed to the target of rapamycin (TOR). These results suggested that AFB1 aggravated the disruption of the immune barrier of grass carp gill after being challenge with F. columnare. Finally, the upper limit of safety of AFB1 for grass carp, based on Columnaris disease, was 31.10 µg/kg diet.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , NF-kappa B/metabolismo , Suplementos Nutricionais/análise , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Aflatoxina B1/toxicidade , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/farmacologia , Carpas/metabolismo , Brânquias/metabolismo , Imunidade Inata , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Transdução de Sinais , Dieta/veterinária , Antioxidantes/metabolismo , Glutationa , Ração Animal/análise
17.
Food Chem ; 399: 133799, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998490

RESUMO

Flesh quality is evaluated according to nutritional value and sensory quality. Cinnamaldehyde (CIN) improves mammalian meat quality, but research relating this to aquaculture is scarce. In this study, five doses of CIN (0, 36, 72, 108, 144 mg/kg diet) were fed to grass carp (Ctenopharyngodon idella) for 60 days. The results show that CIN supplementation increased nutritional value by increasing crude protein content. CIN also improved the sensory quality by increasing the pH and collagen content, decreasing shear force, lactate, and cooking loss. These changes may be related to changes in muscle fiber growth by increasing myofiber diameter. The increased myofiber diameter induced by CIN is associated with TOR mRNA and protein levels, and down-regulated FOXO3a mRNA levels, which might be associated with PTP1B/IGF1/PI3K/AKTs-TOR/FOXO3a signaling. Based on muscle crude protein content, optimal CIN supplementation dosage was 88.01 mg/kg.


Assuntos
Carpas , Doenças dos Peixes , Acroleína/análogos & derivados , Ração Animal/análise , Animais , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata , Mamíferos/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , Transdução de Sinais
18.
J Sci Food Agric ; 103(3): 1172-1182, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36085562

RESUMO

BACKGROUND: Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS: Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION: Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.


Assuntos
Carpas , Doenças dos Peixes , Animais , Aminoácidos , Ração Animal/análise , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Proteínas de Peixes/metabolismo , Mananas
19.
BMC Ophthalmol ; 22(1): 483, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510171

RESUMO

BACKGROUND: To verify efficacy of automatic screening and classification of glaucoma with deep learning system. METHODS: A cross-sectional, retrospective study in a tertiary referral hospital. Patients with healthy optic disc, high-tension, or normal-tension glaucoma were enrolled. Complicated non-glaucomatous optic neuropathy was excluded. Colour and red-free fundus images were collected for development of DLS and comparison of their efficacy. The convolutional neural network with the pre-trained EfficientNet-b0 model was selected for machine learning. Glaucoma screening (Binary) and ternary classification with or without additional demographics (age, gender, high myopia) were evaluated, followed by creating confusion matrix and heatmaps. Area under receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score were viewed as main outcome measures. RESULTS: Two hundred and twenty-two cases (421 eyes) were enrolled, with 1851 images in total (1207 normal and 644 glaucomatous disc). Train set and test set were comprised of 1539 and 312 images, respectively. If demographics were not provided, AUC, accuracy, precision, sensitivity, F1 score, and specificity of our deep learning system in eye-based glaucoma screening were 0.98, 0.91, 0.86, 0.86, 0.86, and 0.94 in test set. Same outcome measures in eye-based ternary classification without demographic data were 0.94, 0.87, 0.87, 0.87, 0.87, and 0.94 in our test set, respectively. Adding demographics has no significant impact on efficacy, but establishing a linkage between eyes and images is helpful for a better performance. Confusion matrix and heatmaps suggested that retinal lesions and quality of photographs could affect classification. Colour fundus images play a major role in glaucoma classification, compared to red-free fundus images. CONCLUSIONS: Promising results with high AUC and specificity were shown in distinguishing normal optic nerve from glaucomatous fundus images and doing further classification.


Assuntos
Aprendizado Profundo , Glaucoma , Disco Óptico , Humanos , Estudos de Casos e Controles , Estudos Retrospectivos , Estudos Transversais , Disco Óptico/diagnóstico por imagem , Disco Óptico/patologia , Fundo de Olho , Glaucoma/patologia , Curva ROC
20.
Front Immunol ; 13: 1027064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330527

RESUMO

Aflatoxin B1 (AFB1) is kind of a common mycotoxin in food and feedstuff. Aquafeeds are susceptible to contamination of AFB1. In teleost fish, the spleen and head kidney are key immune organ. Moreover, the fish skin is a critical mucosal barrier system. However, there was little study on the effects of dietary AFB1 on the immune response of these immune organs in fish. This study aimed to explore the impacts of oral AFB1 on the immune competence and its mechanisms in the skin, spleen, and head kidney of grass carp. Our work indicated that dietary AFB1 reduced antibacterial compounds and immunoglobulins contents, and decreased the transcription levels of antimicrobial peptides in grass carp immune organs. In addition, dietary AFB1 increased the transcription levels of pro-inflammatory cytokines and reduced the transcription levels of anti-inflammatory cytokines in the grass carp immune organs, which might be regulated by NF-κB and TOR signaling, respectively. Meanwhile, we evaluated the content of AFB1 in the grass carp diet should not exceed 29.48 µg/kg diet according to the levels of acid phosphatase and lysozyme. In summary, dietary AFB1 impaired immune response in grass carp skin, spleen, and head kidney.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/fisiologia , NF-kappa B , Aflatoxina B1/toxicidade , Imunidade Inata , Ração Animal/análise , Dieta , Transdução de Sinais , Citocinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA