Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Eur J Neurosci ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708527

RESUMO

Glioblastomas (GBMs) are characterized by high heterogeneity, involving diverse cell types, including those with stem-like features contributing to GBM's malignancy. Moreover, metabolic alterations promote growth and therapeutic resistance of GBM. Depending on the metabolic state, antimetabolic treatments could be an effective strategy. Against this background, we investigated temporal and regional expression changes and co-staining patterns of selected metabolic markers [pyruvate kinase muscle isozyme 1/2 (PKM1/2), glucose transporter 1 (GLUT1), monocarboxylate transporter 1/4 (MCT1/4)] in a rodent model and patient-derived samples of GBM. To understand the cellular sources of marker expression, we also examined the connection of metabolic markers to markers related to stemness [Nestin, Krüppel-like factor 4 (KLF4)] in a regional and temporal context. Rat tumour biopsies revealed a temporally increasing expression of GLUT1, higher expression of MCT1/4, Nestin and KLF4, and lower expression of PKM1 compared to the contralateral hemisphere. Patient-derived tumours showed a higher expression of PKM2 and Nestin in the tumour centre vs. edge. Whereas rare co-staining of GLUT1/Nestin was found in tumour biopsies, PKM1/2 and MCT1/4 showed a more distinct co-staining with Nestin in rats and humans. KLF4 was mainly co-stained with GLUT1, MCT1 and PKM1/2 in rat and human tumours. All metabolic markers yielded individual co-staining patterns among themselves. Co-staining mainly occurred later in tumour progression and was more pronounced in tumour centres. Also, positive correlations were found amongst markers that showed co-staining. Our results highlight a link between metabolic alterations and stemness in GBM progression, with complex distinctions depending on studied markers, time points and regions.

2.
Cells ; 12(11)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296610

RESUMO

The aggressive features of glioblastoma (GBM) are associated with dormancy. Our previous transcriptome analysis revealed that several genes were regulated during temozolomide (TMZ)-promoted dormancy in GBM. Focusing on genes involved in cancer progression, Chemokine (C-C motif) Receptor-Like (CCRL)1, Schlafen (SLFN)13, Sloan-Kettering Institute (SKI), Cdk5 and Abl Enzyme Substrate (Cables)1, and Dachsous Cadherin-Related (DCHS)1 were selected for further validation. All showed clear expression and individual regulatory patterns under TMZ-promoted dormancy in human GBM cell lines, patient-derived primary cultures, glioma stem-like cells (GSCs), and human GBM ex vivo samples. All genes exhibited complex co-staining patterns with different stemness markers and with each other, as examined by immunofluorescence staining and underscored by correlation analyses. Neurosphere formation assays revealed higher numbers of spheres during TMZ treatment, and gene set enrichment analysis of transcriptome data revealed significant regulation of several GO terms, including stemness-associated ones, indicating an association between stemness and dormancy with the involvement of SKI. Consistently, inhibition of SKI during TMZ treatment resulted in higher cytotoxicity, proliferation inhibition, and lower neurosphere formation capacity compared to TMZ alone. Overall, our study suggests the involvement of CCRL1, SLFN13, SKI, Cables1, and DCHS1 in TMZ-promoted dormancy and demonstrates their link to stemness, with SKI being particularly important.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica
3.
Biomedicines ; 11(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37371613

RESUMO

Local drug delivery systems (LDDS) represent a promising therapy strategy concerning the most common and malignant primary brain tumor glioblastoma (GBM). Nevertheless, to date, only a few systems have been clinically applied, and their success is very limited. Still, numerous new LDDS approaches are currently being developed. Here, (partial resection) GBM animal models play a key role, as such models are needed to evaluate the therapy prior to any human application. However, such models are complex to establish, and only a few reports detail the process. Here, we report our results of establishing a partial resection glioma model in rats suitable for evaluating LDDS. C6-bearing Wistar rats and U87MG-spheroids- and patient-derived glioma stem-like cells-bearing athymic rats underwent tumor resection followed by the implantation of an exemplary LDDS. Inoculation, tumor growth, residual tumor tissue, and GBM recurrence were reliably imaged using high-resolution Magnetic Resonance Imaging. The release from an exemplary LDDS was verified in vitro and in vivo using Fluorescence Molecular Tomography. The presented GBM partial resection model appears to be well suited to determine the efficiency of LDDS. By sharing our expertise, we intend to provide a powerful tool for the future testing of these very promising systems, paving their way into clinical application.

4.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240419

RESUMO

Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Gossipol , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Gossipol/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Serina-Treonina Quinases TOR , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
5.
Pharmaceutics ; 14(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35456611

RESUMO

Localized therapy approaches have emerged as an alternative drug administration route to overcome the limitations of systemic therapies, such as the crossing of the blood-brain barrier in the case of brain tumor treatment. For this, implantable drug delivery systems (DDS) have been developed and extensively researched. However, to achieve an effective localized treatment, the release kinetics of DDS needs to be controlled in a defined manner, so that the concentration at the tumor site is within the therapeutic window. Thus, a DDS, with patient-specific release kinetics, is crucial for the improvement of therapy. Here, we present a computationally supported reservoir-based DDS (rDDS) development towards patient-specific release kinetics. The rDDS consists of a reservoir surrounded by a polydimethylsiloxane (PDMS) microchannel membrane. By tailoring the rDDS, in terms of membrane porosity, geometry, and drug concentration, the release profiles can be precisely adapted, with respect to the maximum concentration, release rate, and release time. The release is investigated using a model dye for varying parameters, leading to different distinct release profiles, with a maximum release of up to 60 days. Finally, a computational simulation, considering exemplary in vivo conditions (e.g., exchange of cerebrospinal fluid), is used to study the resulting drug release profiles, demonstrating the customizability of the system. The establishment of a computationally supported workflow, for development towards a patient-specific rDDS, in combination with the transfer to suitable drugs, could significantly improve the efficacy of localized therapy approaches.

6.
Neuromolecular Med ; 24(2): 169-182, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34216357

RESUMO

Deep brain stimulation (DBS) seems to modulate inflammatory processes. Whether this modulation leads to an induction or suppression of inflammatory mediators is still controversially discussed. Most studies of the influence of electrical stimulation on inflammation were conducted in rodent models with direct current stimulation and/or long impulses, both of which differ from the pattern in DBS. This makes comparisons with the clinical condition difficult. We established an in-vitro model that simulated clinical stimulation patterns to investigate the influence of electrical stimulation on proliferation and survival of human astroglial cells, microglia, and differentiated neurons. We also examined its influence on the expression of the inflammatory mediators C-X-C motif chemokine (CXCL)12, CXCL16, CC-chemokin-ligand-2 (CCL)2, CCL20, and interleukin (IL)-1ß and IL-6 by these cells using quantitative polymerase chain reaction. In addition, protein expression was assessed by immunofluorescence double staining. In our model, electrical stimulation did not affect proliferation or survival of the examined cell lines. There was a significant upregulation of CXCL12 in the astrocyte cell line SVGA, and of IL-1ß in differentiated SH-SY5Y neuronal cells at both messenger RNA and protein levels. Our model allowed a valid examination of chemokines and cytokines associated with inflammation in human brain cells. With it, we detected the induction of inflammatory mediators by electrical stimulation in astrocytes and neurons.


Assuntos
Estimulação Encefálica Profunda , Mediadores da Inflamação , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808494

RESUMO

Glioblastoma (GBM) is a barely treatable disease due to its profound chemoresistance. A distinct inter- and intratumoral heterogeneity reflected by specialized microenvironmental niches and different tumor cell subpopulations allows GBMs to evade therapy regimens. Thus, there is an urgent need to develop alternative treatment strategies. A promising candidate for the treatment of GBMs is AT101, the R(-) enantiomer of gossypol. The present study evaluates the effects of AT101, alone or in combination with temozolomide (TMZ), in a microenvironmental glioma stem cell niche model of two GBM cell lines (U251MG and U87MG). AT101 was found to induce strong cytotoxic effects on U251MG and U87MG stem-like cells in comparison to the respective native cells. Moreover, a higher sensitivity against treatment with AT101 was observed upon incubation of native cells with a stem-like cell-conditioned medium. This higher sensitivity was reflected by a specific inhibitory influence on the p-p42/44 signaling pathway. Further, the expression of CXCR7 and the interleukin-6 receptor was significantly regulated upon these stimulatory conditions. Since tumor stem-like cells are known to mediate the development of tumor recurrences and were observed to strongly respond to the AT101 treatment, this might represent a promising approach to prevent the development of GBM recurrences.


Assuntos
Glioblastoma/metabolismo , Glioma/metabolismo , Gossipol/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Gossipol/metabolismo , Gossipol/farmacologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Temozolomida/farmacologia , Microambiente Tumoral/efeitos dos fármacos
8.
Stereotact Funct Neurosurg ; 99(5): 377-380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33677446

RESUMO

OBJECTIVE: Infections are feared complications following deep brain stimulation in 1.9 to 17.6% of cases. These infections can necessitate the removal of implants, which carries the risk of life-threatening withdrawal syndromes, especially in patients suffering from Parkinson's disease. In this report, we describe our procedure of removing an infected implanted pulse generator (IPG) and cables with contralateral replacement in the same session. METHODS: We retrospectively analysed all patients with transpositions of an IPG and cables between 2017 and 2020 in a single-centre, university hospital setting. Medical records of all patients undergoing this particular surgical procedure were systematically reviewed. The shortest follow-up time was 12 months. RESULTS: Between 2017 and 2020, we had 6 patients with a high risk of withdrawal syndrome in whom an infected IPG with cables was removed and replaced on the opposite side in the same session. There were postoperative complications in 2 patients: in one, the generator had to be re-affixed, and in the second, a skin transplant was required over one electrode because of skin necrosis. No case of invasive infection was seen, and the stimulation therapy was not interrupted. CONCLUSION: One-session removal of an IPG and cables with contralateral replacement seems to be an effective therapy for patients at high risk of withdrawal syndrome.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/efeitos adversos , Eletrodos Implantados/efeitos adversos , Humanos , Doença de Parkinson/terapia , Estudos Retrospectivos , Síndrome
9.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872409

RESUMO

(1) Background: Metabolic reprogramming has been postulated to be one of the hallmarks of cancer, thus representing a promising therapeutic target also in glioblastoma multiforme (GBM). Hypoxic tumor cells produce lactate, and monocarboxylate transporters (MCTs) play an important role in its distribution; (2) Methods: We examined the distribution of lactate by multi voxel magnetic resonance spectroscopic imaging and ELISA in glioblastoma multiforme (GBM) patients. In addition, we investigated the expression and cellular localization of MCT1, MCT4, and of several markers connected to tumor progression by quantitative PCR and immunofluorescence double-staining in human GBM ex vivo tissues; (3) Results: The highest lactate concentration was found at the center of the vital parts of the tumor. Three main GBM groups could be distinguished according to their regional gene expression differences of the investigated genes. MCT1 and MCT4 were found on cells undergoing epithelial to mesenchymal transition and on tumor stem-like cells. GBM cells revealing an expression of cellular dormancy markers, showed positive staining for MCT4; (4) Conclusion: Our findings indicate the existence of individual differences in the regional distribution of MCT1 and MCT4 and suggest that both transporters have distinct connections to GBM progression processes, which could contribute to the drug resistance of MCT-inhibitors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Simportadores/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Células-Tronco Neoplásicas/metabolismo , Simportadores/genética
10.
Oncogene ; 39(22): 4421-4435, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32346064

RESUMO

Glioblastoma multiforme (GBM) is a malignant brain tumor that evades therapy regimens. Since cellular dormancy is one strategy for surviving, and since chemokines determine the environmental conditions in which dormancy occurs, we investigated how chemokines affect temozolomide (TMZ)-promoted cellular dormancy entry and exit in GBM cells. TMZ administration over ten days promoted cellular dormancy entry, whereas discontinuing TMZ for a further 15 days resulted in resumption of proliferation. Co-administration of a chemokine cocktail containing CXCL12, CXCL16, and CX3CL1 resulted in both delayed entry and exit from cellular dormancy. A microarray-based transcriptome analysis in LN229 GBM cells revealed that cellular dormancy entry was characterized by an increased expression of CCL2 and SAA2, while THSD4, FSTL3, and VEGFC were upregulated during dormancy exit. Co-stimulation with the chemokine cocktail reduced upregulation of identified genes. After verifying the appearance of identified genes in human GBM primary cultures and ex vivo samples, we clarified whether each chemokine alone impacts cellular dormancy mechanisms using specific antagonists and selective CRISPR/Cas9 clones. While expression of CCL2 and SAA2 in LN229 cells was altered by the CXCL12-CXCR4-CXCR7 axis, CXCL16 and CX3CL1 contributed to reduced upregulation of THSD4 and, to a weaker extent, of VEGFC. The influence on FSTL3 expression depended on the entire chemokine cocktail. Effects of chemokines on dormancy entry and exit-associated genes were detectable in human GBM primary cells, too, even if in a more complex, cell-specific manner. Thus, chemokines play a significant role in the regulation of TMZ-promoted cellular dormancy in GBMs.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Temozolomida/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CX3CL1 , Quimiocina CXCL12 , Quimiocina CXCL16 , Humanos , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
11.
Stereotact Funct Neurosurg ; 98(3): 176-181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32224614

RESUMO

INTRODUCTION: The rate of intracranial hemorrhage (ICH) after deep brain stimulation (DBS) is between 1.5 and 6.1%, with prolonged deficits occurring in 0.4-2.5% of the patients. This retrospective study investigates whether the prophylactic administration of tranexamic acid (TA) to patients with abnormal platelet function detected preoperatively by platelet function analyzer (PFA) lowered the risk for an ICH event. METHODS: We performed a systematic review of the medical records of 485 consecutively admitted patients who underwent bilateral DBS surgery in a single-center university hospital setting between 2009 and 2018. The cohort was split into two groups. In one group, preoperative PFA screening was performed (n = 156, patients recruited from 2014 to 2018), and TA was administered if platelet function was abnormal. No preoperative PFA was performed in the second group (n = 359, patients recruited from 2009 to 2013). Both cohorts were analyzed for the occurrence of ICH, defined by (i) detection of ICH in routine postoperative magnetic resonance/computed tomography imaging or (ii) in non-routine imaging for the onset of new neurological symptoms. RESULTS: Fourteen of the 156 screened patients (9%) showed reproducible PFA-100 closure abnormalities (3 with von Willebrand disease, 11 with no identifiable cause of platelet dysfunction). Two of the 156 patients (1.3%) in this cohort revealed an ICH on imaging, 1 of whom (0.6%) exhibited a prolonged neurological deficit as a result of ICH. In the cohort without platelet testing, 11 of the 329 patients (3.3%) demonstrated ICH on imaging, of whom 5 (1.5%) suffered from a prolonged neurological deficit. CONCLUSION: In this retrospective study, the screening and the administration of TA appeared to lower the risk of an ICH by 1.8%. One patient with von Willebrand disease suffered an ICH despite TA treatment. A prospective study is needed to clarify the impact of platelet testing and TA administration on the of incidence ICH.


Assuntos
Antifibrinolíticos/administração & dosagem , Transtornos Plaquetários/epidemiologia , Estimulação Encefálica Profunda/efeitos adversos , Hemorragias Intracranianas/epidemiologia , Profilaxia Pré-Exposição/métodos , Ácido Tranexâmico/administração & dosagem , Adolescente , Adulto , Idoso , Transtornos Plaquetários/diagnóstico por imagem , Estimulação Encefálica Profunda/tendências , Feminino , Humanos , Incidência , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragias Intracranianas/prevenção & controle , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Cuidados Pré-Operatórios/métodos , Estudos Prospectivos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento , Adulto Jovem
12.
J Cancer Res Clin Oncol ; 146(1): 117-126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31844979

RESUMO

PURPOSE: Glioblastoma multiforme (GBM) is a poorly curable disease due to its profound chemoresistance. Despite recent advances in surgery, radiotherapy and chemotherapy, the efficient treatment of GBMs is still a clinical challenge. Beside others, AT101, the R-(-) enantiomer of gossypol, and demethoxycurcumin (DMC), a curcumin-related demethoxy compound derived from Curcuma longa, were considered as possible alternative drugs for GBM therapy. METHODS: Using different human primary GBM cell cultures in a long-term stimulation in vitro model, the cytotoxic and anti-proliferative effects of single and combined treatment with 5 µM AT101 and 5 µM or 10 µM DMC were investigated. Furthermore, western blots on pAkt and pp44/42 as well as JC-1 staining and real-time RT-PCR were performed to understand the influence of the treatment at the molecular and gene level. RESULTS: Due to enhanced anti-proliferative effects, we showed that combined therapy with both drugs was superior to a single treatment with AT101 or DMC. Here, by determination of the combination index, a synergism of the combined drugs was detectable. Phosphorylation and thereby activation of the kinases p44/42 and Akt, which are involved in proliferation and survival processes, were inhibited, the mitochondrial membrane potential of the GBM cells was altered, and genes involved in dormancy-associated processes were regulated by the combined treatment strategy. CONCLUSION: Combined treatment with different drugs might be an option to efficiently overcome chemoresistance of GBM cells in a long-term treatment strategy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Diarileptanoides/farmacologia , Glioblastoma/tratamento farmacológico , Gossipol/análogos & derivados , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Diarileptanoides/administração & dosagem , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Gossipol/administração & dosagem , Gossipol/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Int J Oncol ; 46(6): 2515-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25845427

RESUMO

Patients with highly malignant glioblastomas have a short median survival time mainly due to aggressive relapses after therapeutic treatment. Beside others, they achieve their progressive character via epithelial-to-mesenchymal transition (EMT). However, comprehensive investigations on EMT in paired primary-recurrent glioblastoma pairs are presently not available. Thus, in our present study we examined the expression profile of different EMT-markers in 17 matched primary and recurrent glioblastomas by qPCR and double-immunofluorescence stainings to identify EMT marker expressing cell types. Additionally, we analyzed the influence of temozolomide on EMT marker expression in vitro. In comparison to primary tumors, expression of ß-catenin (p<0.05), Snail1 (p<0.05), Snail2/Slug (p<0.05), biglycan (p<0.05) and Twist1 (p<0.01) was downregulated in recurrence whereas L1CAM showed upregulation (p<0.05; qPCR). Expression of desmoplakin, vimentin, fibronectin and TGF-ß1 with its receptors TGF-ßR1 and TGF-ßR2 was almost unchanged. Comparing each individual pair, five different 'EMT groups' within our glioblastoma collective were identified according to the regulation of mRNA expression of GFAP, desmoplakin, Snail1, Snail2, Twist1 and vimentin. Additionally, double-stainings of EMT markers in combination with cell specific markers (glial fibrillary acidic protein, CD11b, von Willebrand factor) revealed that EMT markers were expressed in a complex pattern with all three cellular types as possible sources. Temozolomide treatment significantly induced mRNA expression of nearly all investigated EMT markers in T98G glioma cells. Thus, EMT seems to be involved in glioma progression in a complex way requiring an individualized analysis, and is influenced by commonly used therapeutic options in glioma therapy.


Assuntos
Neoplasias Encefálicas/patologia , Transição Epitelial-Mesenquimal , Glioblastoma/patologia , Recidiva Local de Neoplasia/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Temozolomida
14.
Forensic Sci Int ; 228(1-3): 179.e1-7, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23473543

RESUMO

INTRODUCTION: The objective of this article was to explore age-at-death estimates in forensic medicine, which were methodically based on age-dependent, radiologically defined bone-density (HC) decay and which were investigated with a standard clinical computed tomography (CT) system. Such density decay was formerly discovered with a high-resolution flat-panel CT in the skulls of adult females. The development of a standard CT methodology for age estimations--with thousands of installations--would have the advantage of being applicable everywhere, whereas only few flat-panel prototype CT systems are in use worldwide. METHODS: A Multi-Slice CT scanner (MSCT) was used to obtain 22,773 images from 173 European human skulls (89 male, 84 female), taken from a population of patients from the Department of Neuroradiology at the University Hospital Giessen and Marburg during 2010 and 2011. An automated image analysis was carried out to evaluate HC of all images. The age dependence of HC was studied by correlation analysis. The prediction accuracy of age-at-death estimates was calculated. Computer simulations were carried out to explore the influence of noise on the accuracy of age predictions. RESULTS: Human skull HC values strongly scatter as a function of age for both sexes. Adult male skull bone-density remains constant during lifetime. Adult female HC decays during lifetime, as indicated by a correlation coefficient (CC) of -0.53. Prediction errors for age-at-death estimates for both of the used scanners are in the range of ±18 years at a 75% confidence interval (CI). Computer simulations indicate that this is the best that can be expected for such noisy data. CONCLUSIONS: Our results indicate that HC-decay is indeed present in adult females and that it can be demonstrated both by standard and by high-resolution CT methods, applied to different subject groups of an identical population. The weak correlation between HC and age found by both CT methods only enables a method to estimate age-at-death with limited practical relevance since the errors of the estimates are large. Computer simulations clearly indicate that data with less noise and CCs in the order of -0.97 or less would be necessary to enable age-at-death estimates with an accuracy of ±5 years at a 75% CI.


Assuntos
Determinação da Idade pelo Esqueleto/métodos , Densidade Óssea , Crânio/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Simulação por Computador , Feminino , Antropologia Forense , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Caracteres Sexuais , Crânio/anatomia & histologia , Tomografia Computadorizada por Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA