Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37489979

RESUMO

Tritan™ (a kind of glycol-modified polycyclohexylene dimethylene terephthalate) is a novel copolyester mainly in use for the production of sports bottles and food storage containers. Oligomers in three food-grade Tritan™ samples were identified after dissolution-precipitation by high performance liquid chromatography with diode array detection and mass spectrometry and quantified after alkaline hydrolysis to the monomers. The obtained overall oligomer content <1000 Da determined by hydrolysis ranged from 7.2 to 10.6 mg/g material. Three consecutive migration experiments were performed according to the Commission Regulation (EU) No 10/2011. Oligomer migration values decreased from first to third migration during all simulations. Less than 25 µg/kg (third migrate) were detected in bottle migrates when tested under room temperature storage conditions (40 °C, 24 h) with simulants 3% acetic acid, 20 and 50% ethanol and during hot-fill testing (70 °C, 2 h) with simulants 3% acetic acid and 20% ethanol, respectively, while 170 µg/kg were determined in 50% ethanol after migration at 70 °C for 2 h. Food storage containers that were labelled as microwave-suitable by the supplier were tested according to the Joint Research Centre recommendations for microwave dishware. A strong deformation of the containers as well as a loss of transparency were observed during the tests (100 °C, 2 h with 10% ethanol and 3% acetic acid in an autoclave, 121 °C, 30 min with sunflower oil), questioning the suitability of the material for microwave applications. Maximum oligomer migration was 379 µg/kg during the third migration (sunflower oil at 121 °C for 30 min). Based on the migration data and an in silico oligomer evaluation according to the threshold of toxicological concern concept, no exceedances of daily thresholds for oligomers are expected from a proper use of Tritan™ drinking bottles, even with hot drinks.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Plásticos , Hidrólise , Plásticos/efeitos adversos , Plásticos/química , Poliésteres
2.
Artigo em Inglês | MEDLINE | ID: mdl-36206019

RESUMO

Oligomers are a significant group of migrating substances from food contact materials made of polyesters like polybutylene terephthalate (PBT). Twenty-three cyclic and linear oligomers with different end groups including olefin-terminated oligomers, which are associated with thermal stress of the material, were tentatively identified in PBT extracts by high-performance liquid chromatography with mass spectrometry and diode array detection. Quantification approaches based on chromophore concentration, relative response factors, and overall oligomer determination after hydrolysis to the monomer terephthalic acid were employed. An exhaustive extraction of thirteen PBT samples yielded an overall oligomer content of 1.87-6.10 mg/g material (sum of individual oligomers < 1,000 Da) with a predominant content of cyclic over linear oligomers. Migration experiments were performed according to Regulation (EU) No. 10/2011 using the official food simulants as well as cows' milk. A total of 218 µg cyclic oligomers/L milk were detected in the third migrate relevant for risk assessment of repeated-use articles under hot-fill conditions (70 °C, 2 h). The official food simulant for milk, 50% ethanol, was found to overestimate the actual migration into milk by a factor of four. Frying conditions using sunflower oil as the food simulant (200 °C, 10 min) resulted in a migration of 7.5 mg cyclic oligomers/kg oil. The exposure to migrating oligomers is critical in some scenarios when evaluated by the threshold of toxicological concern concept; however, the toxicological evaluation poses a challenge due to the possible hydrolysis of cyclic oligomers in the human gastrointestinal tract. Our experiments display the need for a toxicological evaluation of PBT oligomers because the migration of cyclic oligomers is expected to exceed the current in silico-based thresholds under foreseeable conditions of use.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Animais , Bovinos , Feminino , Humanos , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Medição de Risco
3.
Artigo em Inglês | MEDLINE | ID: mdl-34780321

RESUMO

Styrene-acrylonitrile-copolymer (SAN) and acrylonitrile-butadiene-styrene-copolymer (ABS) are gaining in importance as food contact materials. Oligomers and other non-intentionally added substances can migrate into foodstuffs. Five SAN and four ABS samples from the German market and manufacturers were extracted and the extractable oligomers were characterised by high performance liquid chromatography-mass spectrometry/ultraviolet detection/chemiluminescence nitrogen detection/fluorescence detection and gas chromatography-mass spectrometry. Trimers, formed from acrylonitrile and styrene units, were determined to be the dominating group of extractable oligomers in SAN and ABS in concentrations of about 4900-15800 mg/kg material. Furthermore, styrene-acrylonitrile dimers, styrene oligomers, styrene monomer and ethylbenzene were identified in the sample extracts. Migration testing with three consecutive migrations for multiple use articles was performed for two SAN articles. Migration of trimers into water, 3% acetic acid, 10% and 20% ethanol under hot-fill conditions (70°C, 2 h) was not detectable above 9 µg/dm2, while 50% ethanol acting as a food simulant for milk (124 µg/dm2 trimers during the third migration) was shown to overestimate the actual migration into milk (< 11 µg/dm2 trimers at 70°C, 2 h). 2-Amino-3-methyl-1-naphthalenecarbonitrile (AMNC), an oligomer degradation product and a primary aromatic amine, was detected in all material sample extracts (0.3-17.1 mg/kg material) and was released into food simulants in low amounts (< 0.014 µg/dm2 during the third migration into 50% ethanol at 70°C, 2 h).


Assuntos
Acrilonitrila/isolamento & purificação , Butadienos/isolamento & purificação , Análise de Alimentos , Contaminação de Alimentos/análise , Polímeros/isolamento & purificação , Estireno/isolamento & purificação , Acrilonitrila/química , Butadienos/química , Polímeros/química , Estireno/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-34237242

RESUMO

Polyesters labelled as bio-based or compostable are increasingly common among the 'bioplastics' in use as food contact materials (FCM). The knowledge of material composition is mandatory to predict potential leachable oligomers as well as to partly evaluate the correctness of the label 'bioplastic', which is used for promotional purposes. The composition of (bio)polyesters can be determined by alkaline hydrolysis of the entire material and subsequent analysis of the monomers via high-performance liquid chromatography with diode array detection and GC-MS detection. Thirty-three frequently used monomers (polycarboxylic acids, hydroxy carboxylic acids, polyols) including highly polar monomers such as lactic acid were analysed with detection limits below 10 g/kg of the material. Lactic acid enantiomer elucidation was performed using an enzyme assay. The content of non-hydrolysable residue was determined gravimetrically after hydrolysis, and the inorganic residue after washing. The composition of 12 polyesters mostly in food contact, labelled as bio-based or compostable and sampled from the market was elucidated recovering 92-101% of the total mass by summing up the determined monomers and non-polyester contents. Seven different monomers were detected in the 12 samples (up to four different monomers per sample), lactic acid being the most common (9 samples) with contents ranging from a minor component (about 11 mol%) up to the only monomer found in the material. The ratio of d- to l-lactic acid ranged from 0.3:99.7 to 4.7:95.3 (w/w). The non-hydrolysable (in)organic residue was quantified in amounts of up to 390 g/kg. Overall, the presented analytical protocol is a fundamental tool helping both to verify the appropriateness of labelling as biopolyesters as well as to predict potential leachables such as oligomers during an FCM risk assessment.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Poliésteres/química , Embalagem de Alimentos , Hidrólise , Limite de Detecção
5.
J Chromatogr A ; 1609: 460437, 2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31409488

RESUMO

Thermal papers (e.g. point of sale receipts, adhesive labels, tickets) significantly contribute to contamination of paper material cycles and the environment with substances of (eco-) toxicological concern. In particular, they contain color developers like endocrine disrupting bisphenols in typical concentrations of about 1-2 percent per weight (wt%). Bisphenol A (BPA) was used as the common color developer over the last decades, but it will be restricted for thermal paper application in the European Union to a limit of 0.02 wt% from 2020 onwards. Consequently, a variety of BPA substituents such as bisphenol S (BPS) and its derivatives gain importance in thermal paper application. In this study, a rapid, reliable and cost-effective method for identification and quantification of BPA, alternative color developers and related substances like sensitizers is presented based on HPLC separation coupled with diode array detection (DAD) and Corona charged aerosol detection (CAD). Quantification was performed with regard to the intended use of the substances in thermal papers. Besides traditional UV external calibration using reference standards, alternative quantification approaches, in particular UV chromophore concentration for BPS derivatives and CAD universal response technique for low-volatile color developers, were applied and compared in order to allow quantification without reference substances. A market analysis for intended used color developers and sensitizers was performed on thermal paper samples (n = 211) collected in Germany during 2018 and 2019. Pergafast 201 (in 41.7% of the samples) was the most common color developer with concentrations above 0.02 wt%, followed by BPA (36.0%), BPS (13.3%) and other BPS derivatives known as D8, D-90, BPS-MAE and TGSA, that are mainly present in adhesive labels. Sensitizers were determined in over 90% of the samples.


Assuntos
Aerossóis/análise , Compostos Benzidrílicos/análise , Marketing , Papel , Fenóis/análise , Temperatura , Compostos Benzidrílicos/química , Calibragem , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Cor , Disruptores Endócrinos/análise , União Europeia , Alemanha , Limite de Detecção , Modelos Lineares , Fenóis/química , Padrões de Referência , Sulfonas
6.
J Chromatogr A ; 1572: 187-202, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30153980

RESUMO

In terms of risk assessment especially for known and unknown substances migrating from food contact materials, quantification without corresponding reference substances currently poses a challenge. In the present study, the opportunity of a universal response quantification approach was evaluated by using a corona charged aerosol detector (CAD) for liquid chromatography combined with inverse gradient compensation. Characteristics of CAD detection in dependence of substance properties were analyzed with 46 randomly chosen reference substances. An almost equal CAD response (±20%) was achieved for non-volatile substances with a molecular weight of minimum 400 g/mol and a vapor pressure of maximum 10-8 Torr. We empirically defined an analytical parameter, Q50/35, the quotient of CAD peak areas at CAD evaporator temperatures of 50 °C and 35 °C, to predict the adequacy of the CAD universal response approach for quantification of known and unknown analyte substances. Exemplarily, we applied the CAD universal quantification approach for the determination of extractable oligomers below 1000 g/mol from a variety of food contact polycondensate plastic materials (e.g. polyesters like polyethylene terephthalate, polybutylene terephthalate, Tritan copolyester, polyamides 6, 6.6 and 6 T/6I and polyarylsulfones polyphenylsulfone and polyethersulfone). Quantitative results for in total 44 oligomers out of 11 materials were compared with established material-specific quantification methods using extracted oligomer mixtures as well as individual oligomers isolated from the mixtures. CAD-based quantification results were generally in accordance to published quantification approaches for polyamide oligomers and oligomers from polyarylsulfones. For oligomers extracted and isolated from polyester materials a slight underestimation was determined by CAD universal response approach. In terms of detection limits and accuracy, the universal CAD approach exhibits no advantages compared to established UV-methods, to date.


Assuntos
Aerossóis/química , Nylons/química , Poliésteres/química , Polímeros/química , Sulfonas/química , Adipatos/análise , Adipatos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Ácidos Dicarboxílicos/análise , Ácidos Dicarboxílicos/isolamento & purificação , Embalagem de Alimentos , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA