Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pract Radiat Oncol ; 12(2): 170-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34644601

RESUMO

The digitization of healthcare for patient safety and efficiency introduced third party networks into closed hospital systems increasing the probability of cyberattacks and their consequences(1). In April 2021, a major vendor of a Radiation Oncology (RO) record and verify system (RVS) suffered a ransomware attack, affecting our department and many others across the United States. This article summarizes our response to the ransomware event including workflows, team member roles, responsibilities, communications and departmental recovery. The RVS created or housed accurate patient dose records for 6 locations. The immediate response to the ransomware attack was to shut down the system including the ability to treat patients. With the utilization of the hospital EMR and pre-existing interfaces with RVS, the department was able to safely continue patient radiotherapy treatments innovatively utilizing a direct Digital Imaging and Communications in Medicine (DICOM) transfer of patient data to the linear accelerators and implementing paper charting. No patients were treated in the first 24 hours of the attack. Within 48 hours of the ransomware event, 50% of patients were treated, and within 1 week, 95% of all patients were treated using direct DICOM transfer and paper charts. The RVS was completely unavailable for 2.5 weeks and full functionality was not restored for 4.5 weeks. A phased approach was adopted for re-introduction of patient treatments back into the RVS. Human capital costs included communication, outreach, workflow creation, quality assurance and extended clinical hours. Key lessons learned were to have a back-up of essential information, employ 'dry run' emergency training, having consistent parameter requirements across different vendor hardware and software, and having a plan for the recovery effort of restoring normal operations once software is operational. The provided report presents valuable information for the development of cyber-attack preparedness for RO departments.


Assuntos
Radioterapia (Especialidade) , Comunicação , Atenção à Saúde , Humanos , Aceleradores de Partículas , Estados Unidos , Fluxo de Trabalho
2.
J Appl Clin Med Phys ; 22(5): 89-96, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33783960

RESUMO

PURPOSE: The purpose of this study was to evaluate the performance of three common deformable image registration (DIR) packages across algorithms and institutions. METHODS AND MATERIALS: The Deformable Image Registration Evaluation Project (DIREP) provides ten virtual phantoms derived from computed tomography (CT) datasets of head-and-neck cancer patients over a single treatment course. Using the DIREP phantoms, DIR results from 35 institutions were submitted using either Velocity, MIM, or Eclipse. Submitted deformation vector fields (DVFs) were compared to ground-truth DVFs to calculate target registration error (TRE) for six regions of interest (ROIs). Statistical analysis was performed to determine the variability between each DIR software package and the variability of users within each algorithm. RESULTS: Overall mean TRE was 2.04 ± 0.35 mm for Velocity, 1.10 ± 0.29 mm for MIM, and 2.35 ± 0.15 mm for Eclipse. The MIM mean TRE was significantly different than both Velocity and Eclipse for all ROIs. Velocity and Eclipse mean TREs were not significantly different except for when evaluating the registration of the cord or mandible. Significant differences between institutions were found for the MIM and Velocity platforms. However, these differences could be explained by variations in Velocity DIR parameters and MIM software versions. CONCLUSIONS: Average TRE was shown to be <3 mm for all three software platforms. However, maximum errors could be larger than 2 cm indicating that care should be exercised when using DIR. While MIM performed statistically better than the other packages, all evaluated algorithms had an average TRE better than the largest voxel dimension. For the phantoms studied here, significant differences between algorithm users were minimal suggesting that the algorithm used may have more impact on DIR accuracy than the particular registration technique employed. A significant difference in TRE was discovered between MIM versions showing that DIR QA should be performed after software upgrades as recommended by TG-132.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Cabeça , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
3.
Pract Radiat Oncol ; 10(5): e425-e431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004703

RESUMO

PURPOSE: Treating critically ill patients in radiation oncology departments poses multiple safety risks. This study describes a method to improve the speed of radiation treatment for patients in the intensive care unit by eliminating the need for computed tomography (CT) simulation or on-table treatment planning using patients' previously acquired diagnostic CT scans. METHODS AND MATERIALS: Initially, a retrospective planning study was performed to assess the applicability and safety of diagnostic scan-based planning (DSBP) for 3 typical indications for radiation therapy in patients in the intensive care unit: heterotopic ossification (10), spine metastases (cord compression; 10), and obstructive lung lesions (5). After identification of an appropriate diagnostic CT scan, treatment planning was performed using the diagnostic scan data set. These treatment plans were then transferred to the patients' simulation scans, and a dosimetric comparison was performed between the 2 sets of plans. Additionally, a time study of the first 10 patients treated with DSBP in our department was performed. RESULTS: The retrospective analysis demonstrated that DSBP resulted in treatment plans that, when transferred to the CT simulation data sets, provided excellent target coverage, a median D95% of 96% (range, 86%-100%) of the prescription dose with acceptable hot spots, and a median Dmax108% (range, 102%-113%). Subsequently, DSBP has been used for 10 critically ill patients. The patients were treated without CT simulation, and the median time between patient check-in to the department and completion of radiation therapy was 28 minutes (range, 18-47 minutes.) CONCLUSIONS: This study demonstrates that it is possible to safely use DSBP for the treatment of critically ill patients. This method has the potential to simplify the treatment process and improve the speed and safety of treatment.


Assuntos
Estado Terminal , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
4.
Hum Brain Mapp ; 38(1): 352-369, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27629984

RESUMO

The aim of this study was to apply recently developed automated fiber segmentation and quantification methods using diffusion tensor imaging (DTI) and DTI-based deterministic and probabilistic tractography to access local and global diffusion changes in blast-induced mild traumatic brain injury (bmTBI). Two hundred and two (202) male active US service members who reported persistent post-concussion symptoms for more than 6 months after injury were recruited. An additional forty (40) male military controls were included for comparison. DTI results were examined in relation to post-concussion and post-traumatic stress disorder (PTSD) symptoms. No significant group difference in DTI metrics was found using voxel-wise analysis. However, group comparison using tract profile analysis and tract specific analysis, as well as single subject analysis using tract profile analysis revealed the most prominent white matter microstructural injury in chronic bmTBI patients over the frontal fiber tracts, that is, the front-limbic projection fibers (cingulum bundle, uncinate fasciculus), the fronto-parieto-temporal association fibers (superior longitudinal fasciculus), and the fronto-striatal pathways (anterior thalamic radiation). Effects were noted to be sensitive to the number of previous blast exposures, with a negative association between fractional anisotropy (FA) and time since most severe blast exposure in a subset of the multiple blast-exposed group. However, these patterns were not observed in the subgroups classified using macrostructural changes (T2 white matter hyperintensities). Moreover, post-concussion symptoms and PTSD symptoms, as well as neuropsychological function were associated with low FA in the major nodes of compromised neurocircuitry. Hum Brain Mapp 38:352-369, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Mapeamento Encefálico , Fibras Nervosas/patologia , Rede Nervosa/patologia , Vias Neurais/patologia , Adulto , Anisotropia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA