Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(2): 698-716, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955589

RESUMO

Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.


Assuntos
Doença de Alexander , Camundongos , Animais , Doença de Alexander/metabolismo , Doença de Alexander/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Clopidogrel/metabolismo , Cálcio/metabolismo , Progressão da Doença , Trifosfato de Adenosina/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139424

RESUMO

Peripheral infection induces inflammation in peripheral tissues and the brain, impacting brain function. Glial cells are key players in this process. However, the effects of peripheral infection on glial activation and brain function remain unknown. Here, we showed that varying degrees of peripheral infection had different effects on the regulation of brain functions by microglia-dependent and -independent mechanisms. Acute mild infection (one-day LPS challenge: 1LPS) exacerbated middle cerebral artery occlusion (MCAO) injury, and severe infection (four-day LPS challenge: 4LPS) for one week suppressed it. MCAO injury was assessed by triphenyltetrazolium chloride staining. We observed early activation of microglia in the 1LPS and 4LPS groups. Depleting microglia with a colony-stimulating factor-1 receptor (CSF1R) antagonist had no effect on 1LPS-induced brain injury exacerbation but abolished 4LPS-induced protection, indicating microglial independence and dependence, respectively. Microglia-independent exacerbation caused by 1LPS involved peripheral immune cells including macrophages. RNA sequencing analysis of 4LPS-treated microglia revealed increased factors related to anti-inflammatory and neuronal tissue repair, suggesting their association with the protective effect. In conclusion, varying degrees of peripheral inflammation had contradictory effects (exacerbation vs. protection) on MCAO, which may be attributed to microglial dependence. Our findings highlight the significant impact of peripheral infection on brain function, particularly in relation to glial cells.


Assuntos
Lipopolissacarídeos , Microglia , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Macrófagos , Encéfalo , Infarto da Artéria Cerebral Média , Inflamação
3.
Transl Vis Sci Technol ; 11(1): 25, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040915

RESUMO

Purpose: Because the importance of glia in regulating brain functions has been demonstrated, genetic technologies that manipulate glial cell-specific gene expression in the brain have become essential and have made great progress. However, it is unknown whether the same strategy that is used in the brain can be applied to the retina because retinal glia differs from glia in the brain. Here, we aimed to find a method for selective gene expression in Müller cells (characteristic glial cells in the retina) and identified Mlc1 as a specific promoter of Müller cells. Methods: Mlc1-tTA::Yellow-Cameleon-NanotetO/tetO (YC-Nano) mice were used as a reporter line. YC-Nano, a fluorescent protein, was ectopically expressed in the cell type controlled by the Mlc1 promotor. Immunofluorescence staining was used to identify the cell type expressing YC-Nano protein. Results: YC-Nano-positive (+) signals were observed as vertical stalks in the sliced retina and spanned from the nerve fiber layer through the outer nuclear layer. The density of YC-Nano+ cells was higher around the optic nerve head and lower in the peripheral retina. The YC-Nano+ signals colocalized with vimentin, a marker of Müller cells, but not with the cell markers for blood vessels, microglia, neurons, or astrocytes. Conclusions: The Mlc1 promoter allows us to manipulate gene expression in Müller cells without affecting astrocytes in the retina. Translational Relevance: Gene manipulation under control of Mlc1 promoter offers novel technique to investigate the role of Müller cells.


Assuntos
Células Ependimogliais , Retina , Animais , Astrócitos , Expressão Gênica , Proteínas de Membrana , Camundongos , Neuroglia
4.
Glia ; 69(11): 2546-2558, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339538

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) in astrocytes is a key molecule for controlling synapse remodeling. Although mGluR5 is abundant in neonatal astrocytes, its level is gradually down-regulated during development and is almost absent in the adult. However, in several pathological conditions, mGluR5 re-emerges in adult astrocytes and contributes to disease pathogenesis by forming uncontrolled synapses. Thus, controlling mGluR5 expression in astrocyte is critical for several diseases, but the mechanism that regulates mGluR5 expression remains unknown. Here, we show that adenosine triphosphate (ATP)/adenosine-mediated signals down-regulate mGluR5 in astrocytes. First, in situ Ca2+ imaging of astrocytes in acute cerebral slices from post-natal day (P)7-P28 mice showed that Ca2+ responses evoked by (S)-3,5-dihydroxyphenylglycine (DHPG), a mGluR5 agonist, decreased during development, whereas those evoked by ATP or its metabolite, adenosine, increased. Second, ATP and adenosine suppressed expression of the mGluR5 gene, Grm5, in cultured astrocytes. Third, the decrease in the DHPG-evoked Ca2+ responses was associated with down-regulation of Grm5. Interestingly, among several adenosine (P1) receptor and ATP (P2) receptor genes, only the adenosine A2B receptor gene, Adora2b, was up-regulated in the course of development. Indeed, we observed that down-regulation of Grm5 was suppressed in Adora2b knockout astrocytes at P14 and in situ Ca2+ imaging from Adora2b knockout mice indicated that the A2B receptor inhibits mGluR5 expression in astrocytes. Furthermore, deletion of A2B receptor increased the number of excitatory synapse in developmental stage. Taken together, the A2B receptor is critical for down-regulation of mGluR5 in astrocytes, which would contribute to terminate excess synaptogenesis during development.


Assuntos
Astrócitos , Receptor A2B de Adenosina , Receptor de Glutamato Metabotrópico 5 , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Astrócitos/metabolismo , Proteínas de Transporte/metabolismo , Camundongos , Receptor A2B de Adenosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA