Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544274

RESUMO

Dosimetry based on gas detectors operating in the recombination and saturation region provides unique research opportunities but requires high-quality electrometers with a measuring range below 1 pA (10-12 A). The standard approach in electrometry is to strive to increase the accuracy and precision of the measurement, ignoring the importance of its duration. The article presents an algorithm for the measurement of low current values (from 100 fA) that allows both a fast measurement (with a step of 2.3 ms) and high accuracy (measurement error below 0.1%), depending on the measurement conditions and the expected results. A series of tests and validations of the algorithm were carried out in a measurement system with a Keithley 6517B electrometer and a REM-2 recombination chamber under conditions of constant and time-varying radiation fields. The result of the work is a set of parameters that allow for the optimisation of the operation of the algorithm, maximising the quality of the measurements according to needs and the expected results. The algorithm can be used in low current measurement systems, e.g., for dosimetry of mixed radiation fields using recombination methods and chambers.

2.
PLoS One ; 19(2): e0271711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421965

RESUMO

PURPOSE: Prior to 90Y radioembolization procedure, a pretherapy simulation using 99mTc-MAA is performed. Alternatively, a small dosage of 90Y microspheres could be used. We aimed to assess the accuracy of lung shunt fraction (LSF) estimation in both high activity 90Y posttreatment and pretreatment scans with isotope activity of ~100 MBq, using different imaging techniques. Additionally, we assessed the feasibility of visualising hot and cold hepatic tumours in PET/CT and Bremsstrahlung SPECT/CT images. MATERIALS AND METHODS: Anthropomorphic phantom including liver (with two spherical tumours) and lung inserts was filled with 90Y chloride to simulate an LSF of 9.8%. The total initial activity in the liver was 1451 MBq, including 19.4 MBq in the hot sphere. Nine measurement sessions including PET/CT, SPECT/CT, and planar images were acquired at activities in the whole phantom ranging from 1618 MBq down to 43 MBq. The visibility of the tumours was appraised based on independent observers' scores. Quantitatively, contrast-to-noise ratio (CNR) was calculated for both spheres in all images. RESULTS: LSF estimation. For high activity in the phantom, PET reconstructions slightly underestimated the LSF; absolute difference was <1.5pp (percent point). For activity <100 MBq, the LSF was overestimated. Both SPECT and planar scintigraphy overestimated the LSF for all activities. Lesion visibility. For SPECT/CT, the cold tumour proved too small to be discernible (CNR <0.5) regardless of the 90Y activity in the liver, while hot sphere was visible for activity >200 MBq (CNR>4). For PET/CT, the cold tumour was only visible with the highest 90Y activity (CNR>4), whereas the hot one was seen for activity >100 MBq (CNR>5). CONCLUSIONS: PET/CT may accurately estimate the LSF in a 90Y posttreatment procedure. However, at low activities of about 100 MBq it seems to provide unreliable estimations. PET imaging provided better visualisation of both hot and cold tumours.


Assuntos
Neoplasias Hepáticas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Radioisótopos de Ítrio/uso terapêutico , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia
3.
Radiat Prot Dosimetry ; 199(15-16): 1872-1876, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819297

RESUMO

The subject of the work is the presentation of a new measurement algorithm to be used in dosimetry, based on recombination chambers and methods. The algorithm enables fast measurements of the ambient dose equivalent rate H*(10) with a time resolution of several seconds. In addition to significantly reducing the measurement time, the method allows for the automation of the measurement with continuous evaluation of the results quality. Operating principles are based on frequent charge measurements with precise determination of the measurement moment. With well-known charge and measurement time, the ionisation current and therefore H*(10) can be easily calculated. The time constant of such a system is close to zero and allows to shorten the measurement time dozens of times while improving the quality of measurement by analysing the collected charge course.


Assuntos
Nêutrons , Radiometria , Radiometria/métodos , Algoritmos , Recombinação Genética
4.
Front Oncol ; 12: 903706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912238

RESUMO

Purpose: This study aims to characterize the neutron radiation field inside a scanning proton therapy treatment room including the impact of different pediatric patient sizes. Materials and Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS) has performed a comprehensive measurement campaign to measure neutron ambient dose equivalent, H*(10), at eight different positions around 1-, 5-, and 10-year-old pediatric anthropomorphic phantoms irradiated with a simulated brain tumor treatment. Several active detector systems were used. Results: The neutron dose mapping within the gantry room showed that H*(10) values significantly decreased with distance and angular deviation with respect to the beam axis. A maximum value of about 19.5 µSv/Gy was measured along the beam axis at 1 m from the isocenter for a 10-year-old pediatric phantom at 270° gantry angle. A minimum value of 0.1 µSv/Gy was measured at a distance of 2.25 m perpendicular to the beam axis for a 1-year-old pediatric phantom at 140° gantry angle.The H*(10) dependence on the size of the pediatric patient was observed. At 270° gantry position, the measured neutron H*(10) values for the 10-year-old pediatric phantom were up to 20% higher than those measured for the 5-year-old and up to 410% higher than for the 1-year-old phantom, respectively. Conclusions: Using active neutron detectors, secondary neutron mapping was performed to characterize the neutron field generated during proton therapy of pediatric patients. It is shown that the neutron ambient dose equivalent H*(10) significantly decreases with distance and angle with respect to the beam axis. It is reported that the total neutron exposure of a person staying at a position perpendicular to the beam axis at a distance greater than 2 m from the isocenter remains well below the dose limit of 1 mSv per year for the general public (recommended by the International Commission on Radiological Protection) during the entire treatment course with a target dose of up to 60 Gy. This comprehensive analysis is key for general neutron shielding issues, for example, the safe operation of anesthetic equipment. However, it also enables the evaluation of whether it is safe for parents to remain near their children during treatment to bring them comfort. Currently, radiation protection protocols prohibit the occupancy of the treatment room during beam delivery.

5.
Sci Rep ; 11(1): 4472, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627727

RESUMO

We propose a new in vitro model to assess the impact of 90Y-microspheres derived low-dose beta radiation on colorectal cancer cell line under various oxygenation conditions that mimic the tumor environment. Cancer cells (HCT116) proliferation was assessed using Alamar Blue (AB) assay after 48, 72, and 96 h. FLUKA code assessed changes in cancer cell populations relative to the absorbed dose. In normoxia, mitochondrial activity measured by Alamar Blue after 48-72 h was significantly correlated with the number of microspheres (48 h: r = 0.87 and 72 h: r = 0.89, p < 0.05) and absorbed dose (48 h: r = 0.87 and 72 h: r = 0.7, p < 0.05). In hypoxia, the coefficients were r = 0.43 for both the number of spheres and absorbed dose and r = 0.45, r = 0.47, respectively. Impediment of cancer cell proliferation depended on the absorbed dose. Doses below 70 Gy could reduce colorectal cancer cell proliferation in vitro. Hypoxia induced a higher resistance to radiation than that observed under normoxic conditions. Hypoxia and radiation induced senescence in cultured cells. The new in vitro model is useful for the assessment of 90Y radioembolization effects at the micro-scale.


Assuntos
Partículas beta/uso terapêutico , Neoplasias Colorretais/radioterapia , Radioisótopos de Ítrio/administração & dosagem , Proliferação de Células/efeitos da radiação , Células HCT116 , Humanos , Hipóxia/radioterapia , Microesferas , Mitocôndrias/efeitos da radiação , Radiometria/métodos
6.
PLoS One ; 16(2): e0246848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33566845

RESUMO

INTRODUCTION: We aimed to assess the feasibility of SPECT and PET Y-90 imaging, and to compare these modalities by visualizing hot and cold foci in phantoms for varying isotope concentrations. MATERIALS AND METHODS: The data was acquired from the Jaszczak and NEMA phantoms. In the Jaszczak phantom Y-90 concentrations of 0.1 MBq/ml and 0.2 MBq/ml were used, while higher concentrations, up to 1.0 MBq/ml, were simulated by acquisition time extension with respect to the standard clinical protocol of 30 sec/projection for SPECT and 30 min/bed position for PET imaging. For NEMA phantom, the hot foci had concentrations of about 4 MB/ml and the background 0.1 or 0.0 MBq/ml. All of the acquired data was analysed both qualitatively and quantitatively. Qualitative assessment was conducted by six observers asked to identify the number of visible cold or hot foci. Inter-observer agreement was assessed. Quantitative analysis included calculations of contrast and contrast-to-noise ratio (CNR), and comparisons with the qualitative results. RESULTS: For SPECT data up to two cold foci were discernible, while for PET four foci were visible. We have shown that CNR (with Rose criterion) is a good measure of foci visibility for both modalities. We also found good concordance of qualitative results for the Jaszczak phantom studies between the observers (corresponding Krippendorf's alpha coefficients of 0.76 to 0.84). In the NEMA phantom without background activity all foci were visible in SPECT/CT images. With isotope in the background, 5 of 6 spheres were discernible (CNR of 3.0 for the smallest foci). For PET studies all hot spheres were visible, regardless of the background activity. CONCLUSIONS: PET Y-90 imaging provided better results than Bremsstrahlung based SPECT imaging. This indicates that PET/CT might become the method of choice in Y-90 post radioembolization imaging for visualisation of both necrotic and hot lesions in the liver.


Assuntos
Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Radioisótopos de Ítrio , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA