Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364485

RESUMO

Using bioconversion and simultaneous value-added product generation requires purification of the gaseous and the liquid streams before, during, and after the bioconversion process. The effect of diversified process parameters on the efficiency of biohydrogen generation via biological processes is a broad object of research. Biomass-based raw materials are often applied in investigations regarding biohydrogen generation using dark fermentation and photo fermentation microorganisms. The literature lacks information regarding model mixtures of lignocellulose and starch-based biomass, while the research is carried out based on a single type of raw material. The utilization of lignocellulosic and starch biomasses as the substrates for bioconversion processes requires the decomposition of lignocellulosic polymers into hexoses and pentoses. Among the components of lignocelluloses, mainly lignin is responsible for biomass recalcitrance. The natural carbohydrate-lignin shields must be disrupted to enable lignin removal before biomass hydrolysis and fermentation. The matrix of chemical compounds resulting from this kind of pretreatment may significantly affect the efficiency of biotransformation processes. Therefore, the actual state of knowledge on the factors affecting the culture of dark fermentation and photo fermentation microorganisms and their adaptation to fermentation of hydrolysates obtained from biomass requires to be monitored and a state of the art regarding this topic shall become a contribution to the field of bioconversion processes and the management of liquid streams after fermentation. The future research direction should be recognized as striving to simplification of the procedure, applying the assumptions of the circular economy and the responsible generation of liquid and gas streams that can be used and purified without large energy expenditure. The optimization of pre-treatment steps is crucial for the latter stages of the procedure.


Assuntos
Hidrogênio , Lignina , Biomassa , Lignina/química , Fermentação , Hidrogênio/química , Hidrólise , Amido/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35134664

RESUMO

Lubricating oils are composed of base oils (>85% v/v) and enriching additives (<15% v/v). Three types of base oils may be distinguished: 1) traditional bases (obtained by low-volatile fractions from crude oil distillation refining), 2) synthetic bases (mainly poly-alpha-olefins, sometimes esters, especially succinic acid esters), 3) bases of natural origin (especially obtained from refined plant oils). The bases of natural origin are the only ones recommended for application when lubricating oil may be emitted to the environment (e.g. when the machine with an open cutting system is used). Group-type separation and analysis of group-type composition of base and lubricating oils are of significant importance in quality control and environmental monitoring. Due to the potentially wide range of polarity of the components of base and lubricating oils, group- type separation becomes a difficult separation problem. It is also a serious analytical problem due to the considerable diversity of physicochemical properties. The authors propose a new procedure for the separation and determination of the group-type composition of base and lubricating oils using thin-layer liquid chromatography in normal phase systems (abr. NP-TLC) on silica gel plates impregnated with berberine salt/in the coupling of thin-layer chromatography with flame ionization detection (abr. TLC-FID). A new, effective procedure of TLC plates impregnation with berberine sulphate was presented. The proposed procedure ensures the visualization of all groups of base oils. Extensive experimental research showed that a 2-step development procedure with application of n-hexane up to 100% height of development +15 min and further n-hexane: isopropanol: tri-fluoroacetic acid 96.25: 3: 0.75 (v: v: v) up to 75% height of development is advantageous for the group-type separation, both in TLC-FID and TLC.


Assuntos
Cromatografia em Camada Fina/métodos , Lubrificantes , Óleos , Petróleo/análise , Berberina/química , Ionização de Chama , Lubrificantes/análise , Lubrificantes/química , Lubrificantes/isolamento & purificação , Óleos/análise , Óleos/química , Óleos/isolamento & purificação
3.
Analyst ; 146(23): 7131-7143, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34726203

RESUMO

Quantitative description of biochemical processes inside living cells and at single-molecule levels remains a challenge at the forefront of modern instrumentation and spectroscopy. This paper demonstrates such single-cell, single-molecule analyses performed to study the mechanism of action of olaparib - an up-to-date, FDA-approved drug for germline-BRCA mutated metastatic breast cancer. We characterized complexes formed with PARPi-FL - fluorescent analog of olaparib in vitro and in cancer cells using the advanced fluorescent-based method: Fluorescence Correlation Spectroscopy (FCS) combined with a length-scale dependent cytoplasmic/nucleoplasmic viscosity model. We determined in vitro olaparib-PARP1 equilibrium constant (6.06 × 108 mol L-1). In the cell nucleus, we distinguished three states of olaparib: freely diffusing drug (24%), olaparib-PARP1 complex (50%), and olaparib-PARP1-RNA complex (26%). We show olaparib accumulation in 3D spheroids, where intracellular concentration is twofold higher than in 2D cells. Moreover, olaparib concentration was tenfold higher (506 nmol L-1vs. 57 nmol L-1) in cervical cancer (BRCA1 high abundance) than in breast cancer cells (BRCA1 low abundance) but with a lower toxic effect. Thus we confirmed that the amount of BRCA1 protein in the cells is a better predictor of the therapeutic effect of olaparib than its penetration into cancer tissue. Our single-molecule and single-cell approach give a new perspective of drug action in living cells. FCS provides a detailed in vivo insight, valuable in drug development and targeting.


Assuntos
Fenômenos Bioquímicos , Inibidores de Poli(ADP-Ribose) Polimerases , Imagem Individual de Molécula , Linhagem Celular Tumoral , Reparo do DNA , Humanos , Ftalazinas , Piperazinas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
4.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205435

RESUMO

The oxazole yellow dye, YOYO-1 (a symmetric homodimer), is a commonly used molecule for staining DNA. We applied the brightness analysis to study the intercalation of YOYO-1 into the DNA. We distinguished two binding modes of the dye to dsDNA: mono-intercalation and bis-intercalation. Bis-intercalation consists of two consecutive mono-intercalation steps, characterised by two distinct equilibrium constants (with the average number of base pair per binding site equals 3.5): K1=3.36±0.43×107M-1 and K2=1.90±0.61×105M-1, respectively. Mono-intercalation dominates at high concentrations of YOYO-1. Bis-intercalation occurs at low concentrations.


Assuntos
Benzoxazóis/química , DNA/química , Substâncias Intercalantes/química , Quinolinas/química , Compostos de Quinolínio/química , Dimerização , Corantes Fluorescentes/química
5.
Molecules ; 27(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011389

RESUMO

The methods for hydrogen yield efficiency improvements, the gaseous stream purification in gaseous biofuels generation, and the biomass pretreatment are considered as the main trends in research devoted to gaseous biofuel production. The environmental aspect related to the liquid stream purification arises. Moreover, the management of post-fermentation broth with the application of various biorefining techniques gains importance. Chemical compounds occurring in the exhausted liquid phase after biomass pretreatment and subsequent dark and photo fermentation processes are considered as value-added by products. The most valuable are furfural (FF), 5-hydroxymethylfurfural (HMF), and levulinic acid (LA). Enriching their solutions can be carried with the application of liquid-liquid extraction with the use of a suitable solvent. In these studies, hydrophobic deep eutectic solvents (DESs) were tested as extractants. The screening of 56 DESs was carried out using the Conductor-like Screening Model for Real Solvents (COSMO-RS). DESs which exposed the highest inhibitory effect on fermentation and negligible water solubility were prepared. The LA, FF, and HMF were analyzed using FT-IR and NMR spectroscopy. In addition, the basic physicochemical properties of DES were carefully studied. In the second part of the paper, deep eutectic solvents were used for the extraction of FF, LA, and HMF from post-fermentation broth (PFB). The main extraction parameters, i.e., temperature, pH, and DES: PFB volume ratio (VDES:VPFB), were optimized by means of a Box-Behnken design model. Two approaches have been proposed for extraction process. In the first approach, DES was used as a solvent. In the second, one of the DES components was added to the sample, and DES was generated in situ. To enhance the post-fermentation broth management, optimization of the parameters promoting HMF, FF, and LA extraction was carried under real conditions. Moreover, the antimicrobial effect of the extraction of FF, HMF, and LA was investigated to define the possibility of simultaneous separation of microbial parts and denatured peptides via precipitation.


Assuntos
Solventes Eutéticos Profundos , Fermentação , Interações Hidrofóbicas e Hidrofílicas , Extração Líquido-Líquido , Furaldeído/análogos & derivados , Furaldeído/química , Furaldeído/isolamento & purificação , Química Verde , Ligação de Hidrogênio , Ácidos Levulínicos/química , Ácidos Levulínicos/isolamento & purificação , Extração Líquido-Líquido/métodos , Estrutura Molecular , Solubilidade , Análise Espectral
6.
Artigo em Inglês | MEDLINE | ID: mdl-31434340

RESUMO

Lubricating oils used in machines with an open cutting system, such as a saw or harvester, are applied in forest areas, gardening, in the household, and in urban greenery. During the operation of the device with an open cutting system, the lubricating oil is emitted into the environment. Therefore, the use of an oil base and refining additives of petroleum origin in the content of lubricants is associated with a negative impact on health and the environment. The current legal regulations concerning lubricants applicable in the European Union (EU) assess the degree of biodegradability. Legislation permits the use of biodegradable oils at 60% for a period of 28 days. This means that, in practice, lubricating oil considered to be biodegradable can contain up to 50% of the so-called petroleum oil base. The paper aims to draw public attention to the need to reduce the toxicity and harmful effects, due to their composition, of lubricating oils emitted into the environment on health. The authors discuss the impact of petroleum oil lubricants on soils, groundwater, vegetation, and animals, and the impact of petroleum-origin oil mist on health. An overview of test methods for the biodegradability of lubricating oils is presented, including the Organization for Economic Cooperation and Development (OECD) 301 A-F, 310, and 302 A-D tests, as well as their standard equivalents. The current legal regulations regarding the use and control of lubricating oils emitted into the environment are discussed. Legal provisions are divided according to their area of application. Key issues regarding the biodegradability and toxicity of petroleum fractions in lubricating oils are also addressed. It is concluded that lubricating oils, emitted or potentially emitted into the environment, should contain only biodegradable ingredients in order to eliminate the negative impact on both the environment and health. Total biodegradability should be confirmed by widely applied tests. Therefore, a need to develop and implement low-cost and simple control procedures for each type of lubricating oil, ensuring the possibility of an indisputable conclusion about the presence and total absence of petroleum-derived components in oil, as well as the content of natural ingredients, occurs.


Assuntos
Ecologia , Lubrificantes/toxicidade , Óleos/toxicidade , Animais , Biodegradação Ambiental , Exposição Ambiental , Solo
7.
Molecules ; 23(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463326

RESUMO

The need to pre-treat lignocellulosic biomass prior to dark fermentation results primarily from the composition of lignocellulose because lignin hinders the processing of hard wood towards useful products. Hence, in this work a two-step approach for the pre-treatment of energy poplar, including alkaline pre-treatment and enzymatic saccharification followed by fermentation has been studied. Monoethanolamine (MEA) was used as the alkaline catalyst and diatomite immobilized bed enzymes were used during saccharification. The response surface methodology (RSM) method was used to determine the optimal alkaline pre-treatment conditions resulting in the highest values of both total released sugars (TRS) yield and degree of lignin removal. Three variable parameters (temperature, MEA concentration, time) were selected to optimize the alkaline pre-treatment conditions. The research was carried out using the Box-Behnken design. Additionally, the possibility of the re-use of both alkaline as well as enzymatic reagents was investigated. Obtained hydrolysates were subjected to dark fermentation in batch reactors performed by Enterobacter aerogenes ATCC 13048 with a final result of 22.99 mL H2/g energy poplar (0.6 mol H2/mol TRS).


Assuntos
Enzimas/metabolismo , Etanolamina/química , Hidrogênio/metabolismo , Populus/química , Técnicas de Cultura Celular por Lotes , Terra de Diatomáceas/química , Enterobacter aerogenes/crescimento & desenvolvimento , Fermentação , Hidrólise , Lignina/química , Sacarose/química , Temperatura
8.
Molecules ; 23(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423814

RESUMO

Lignocellulosic biomass is an abundant and renewable resource that potentially contains large amounts of energy. It is an interesting alternative for fossil fuels, allowing the production of biofuels and other organic compounds. In this paper, a review devoted to the processing of lignocellulosic materials as substrates for fermentation processes is presented. The review focuses on physical, chemical, physicochemical, enzymatic, and microbiologic methods of biomass pretreatment. In addition to the evaluation of the mentioned methods, the aim of the paper is to understand the possibilities of the biomass pretreatment and their influence on the efficiency of biofuels and organic compounds production. The effects of different pretreatment methods on the lignocellulosic biomass structure are described along with a discussion of the benefits and drawbacks of each method, including the potential generation of inhibitory compounds for enzymatic hydrolysis, the effect on cellulose digestibility, the generation of compounds that are toxic for the environment, and energy and economic demand. The results of the investigations imply that only the stepwise pretreatment procedure may ensure effective fermentation of the lignocellulosic biomass. Pretreatment step is still a challenge for obtaining cost-effective and competitive technology for large-scale conversion of lignocellulosic biomass into fermentable sugars with low inhibitory concentration.


Assuntos
Fermentação , Lignina/química , Biocombustíveis , Biomassa , Hidrogênio , Hidrólise , Temperatura
9.
Cardiol J ; 22(4): 421-427, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26100827

RESUMO

BACKGROUND: Nowadays, when the majority of patients with acute myocardial infarction (AMI) are treated with primary percutaneous coronary intervention and modern pharmacotherapy, risk stratification becomes a challenge. Simple and easily accessible parameters that would help in a better determination of prognosis are needed. The aim of the study was to estimate the prevalence of high mean corpuscular volume (MCV, defined as MCV > 92 fL) and to establish its prognostic value in non-anemic patients with AMI. METHODS: We retrospectively analyzed the data of 248 consecutive non-anemic patients hospitalized due to AMI (median age: 65 [59-76] years, men: 63%, ST segment elevation myocardial infarction: 31%, and median left ventricular ejection fraction [LVEF]: 50%). RESULTS: The prevalence of high MCV was 39 ± 6% (± 95% confidence interval) in the entire AMI population. High MCV was more prevalent in males, patients with low body mass index, non-diabetics and cigarette smokers (all p < 0.05). During the 180-day follow-up, there were 38 (15%) events, defined as another AMI or death. In a multivariable Cox proportional hazard model, female gender (p < 0.01), low LVEF (p < 0.001), previous AMI (p < 0.05), arterial hypertension (p < 0.05), and high MCV (p < 0.001) were prognosticators of pre-defined events. CONCLUSIONS: In non-anemic patients with AMI, high MCV is an independent prognostic factor of poor outcome defined as another AMI or death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA