Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 18(2): 225-233, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26751286

RESUMO

Zygotic epigenetic reprogramming entails genome-wide DNA demethylation that is accompanied by Tet methylcytosine dioxygenase 3 (Tet3)-driven oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC; refs 1-4). Here we demonstrate using detailed immunofluorescence analysis and ultrasensitive LC-MS-based quantitative measurements that the initial loss of paternal 5mC does not require 5hmC formation. Small-molecule inhibition of Tet3 activity, as well as genetic ablation, impedes 5hmC accumulation in zygotes without affecting the early loss of paternal 5mC. Instead, 5hmC accumulation is dependent on the activity of zygotic Dnmt3a and Dnmt1, documenting a role for Tet3-driven hydroxylation in targeting de novo methylation activities present in the early embryo. Our data thus provide further insights into the dynamics of zygotic reprogramming, revealing an intricate interplay between DNA demethylation, de novo methylation and Tet3-driven hydroxylation.


Assuntos
5-Metilcitosina/metabolismo , Reprogramação Celular , Citosina/análogos & derivados , Metilação de DNA , Epigênese Genética , Zigoto/metabolismo , Animais , Biomarcadores/metabolismo , Cromatografia Líquida , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Técnicas de Cultura Embrionária , Fertilização in vitro , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Cinética , Espectrometria de Massas , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
2.
J Cell Biol ; 206(7): 843-53, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25246615

RESUMO

In mitosis, the Greatwall kinase (called microtubule-associated serine/threonine kinase like [Mastl] in mammals) is essential for prometaphase entry or progression by suppressing protein phosphatase 2A (PP2A) activity. PP2A suppression in turn leads to high levels of Cdk1 substrate phosphorylation. We have used a mouse model with an oocyte-specific deletion of Mastl to show that Mastl-null oocytes resume meiosis I and reach metaphase I normally but that the onset and completion of anaphase I are delayed. Moreover, after the completion of meiosis I, Mastl-null oocytes failed to enter meiosis II (MII) because they reassembled a nuclear structure containing decondensed chromatin. Our results show that Mastl is required for the timely activation of anaphase-promoting complex/cyclosome to allow meiosis I exit and for the rapid rise of Cdk1 activity that is needed for the entry into MII in mouse oocytes.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Quinase CDC2/metabolismo , Meiose , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Anáfase , Animais , Proteína Quinase CDC2/genética , Indução Enzimática , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Oócitos/enzimologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Análise de Célula Única
3.
J Cell Biol ; 204(6): 891-900, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24637322

RESUMO

Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Quinase CDC2/metabolismo , Prófase Meiótica I , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Cromátides/metabolismo , Segregação de Cromossomos , Feminino , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2/metabolismo , Camundongos , Camundongos Knockout , Oócitos/enzimologia , Prometáfase , Securina/metabolismo
4.
Cell Div ; 8(1): 12, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23967866

RESUMO

BACKGROUND: Sister chromatid cohesion mediated by the cohesin complex is essential for accurate chromosome segregation during mitosis and meiosis. Loading of cohesin onto chromosomes is dependent on another protein complex called kollerin, containing Nipbl/Scc2 and Mau2/Scc4. Nipbl is an evolutionarily conserved large protein whose haploinsufficiency in humans causes a developmental disorder called Cornelia de Lange syndrome. Although the function of Nipbl homologues for chromosome cohesion in meiotic cells of non-vertebrate models has been elucidated, Nipbl has not been characterized so far in mammalian spermatocytes or oocytes. FINDINGS: Here we describe our analyses on the expression and localization of Nipbl in nuclei of mouse spermatocytes and oocytes at different stages of meiotic prophase. In both spermatocytes and oocytes we found that Nipbl is associated with the axial/lateral element of the synaptonemal complex (AE/LE) to which cohesin also localizes. Interestingly, Nipbl in spermatocytes, but not in oocytes, dissociates from the AE/LE at mid-pachytene stage coincident with completion of DNA double-strand break repair. CONCLUSIONS: Our data propose that cohesin loading activity is maintained during early stages of meiotic prophase in mammalian spermatocytes and oocytes.

5.
Mol Cell Biol ; 33(8): 1561-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401851

RESUMO

Posttranscriptional regulatory mechanisms are crucial for protein synthesis during spermatogenesis and are often organized by the chromatoid body. Here, we identify the RNA methyltransferase NSun2 as a novel component of the chromatoid body and, further, show that NSun2 is essential for germ cell differentiation in the mouse testis. In NSun2-depleted testes, genes encoding Ddx4, Miwi, and Tudor domain-containing (Tdr) proteins are repressed, indicating that RNA-processing and posttranscriptional pathways are impaired. Loss of NSun2 specifically blocked meiotic progression of germ cells into the pachytene stage, as spermatogonial and Sertoli cells were unaffected in knockout mice. We observed the same phenotype when we simultaneously deleted NSun2 and Dnmt2, the only other cytosine-5 RNA methyltransferase characterized to date, indicating that Dnmt2 was not functionally redundant with NSun2 in spermatogonial stem cells or Sertoli cells. Specific NSun2- and Dnmt2-methylated tRNAs decreased in abundance when both methyltransferases were deleted, suggesting that RNA methylation pathways play an essential role in male germ cell differentiation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metiltransferases/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Testículo/citologia , Animais , Proteínas Argonautas/genética , Diferenciação Celular , RNA Helicases DEAD-box/genética , DNA (Citosina-5-)-Metiltransferases/genética , Perfilação da Expressão Gênica , Infertilidade Masculina/genética , Masculino , Prófase Meiótica I , Metilação , Metiltransferases/genética , Camundongos , Camundongos Knockout , Estágio Paquíteno/genética , Processamento de Proteína Pós-Traducional , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Células de Sertoli/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/enzimologia
6.
Genes Dev ; 24(22): 2505-16, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20971813

RESUMO

During female meiosis, bivalent chromosomes are thought to be held together from birth until ovulation by sister chromatid cohesion mediated by cohesin complexes whose ring structure depends on kleisin subunits, either Rec8 or Scc1. Because cohesion is established at DNA replication in the embryo, its maintenance for such a long time may require cohesin turnover. To address whether Rec8- or Scc1-containing cohesin holds bivalents together and whether it turns over, we created mice whose kleisin subunits can be cleaved by TEV protease. We show by microinjection experiments and confocal live-cell imaging that Rec8 cleavage triggers chiasmata resolution during meiosis I and sister centromere disjunction during meiosis II, while Scc1 cleavage triggers sister chromatid disjunction in the first embryonic mitosis, demonstrating a dramatic transition from Rec8- to Scc1-containing cohesin at fertilization. Crucially, activation of an ectopic Rec8 transgene during the growing phase of Rec8(TEV)(/TEV) oocytes does not prevent TEV-mediated bivalent destruction, implying little or no cohesin turnover for ≥2 wk during oocyte growth. We suggest that the inability of oocytes to regenerate cohesion may contribute to age-related meiosis I errors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Animais , Células Cultivadas , Centrômero/genética , Cromossomos/genética , Endopeptidases/metabolismo , Feminino , Camundongos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Coesinas
7.
J Cell Sci ; 122(Pt 15): 2686-98, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19625504

RESUMO

Proteolytic activity of separase is required for chiasma resolution during meiosis I in mouse oocytes. Rec8, the meiosis-specific alpha-kleisin subunit of cohesin, is a key target of separase in yeast. Is the equivalent protein also a target in mammals? We show here that separase cleaves mouse Rec8 at three positions in vitro but only when the latter is hyper-phosphorylated. Expression of a Rec8 variant (Rec8-N) that cannot be cleaved in vitro at these sites causes sterility in male mice. Their seminiferous tubules lack a normal complement of 2 C secondary spermatocytes and 1 C spermatids and contain instead a high proportion of cells with enlarged nuclei. Chromosome spreads reveal that Rec8-N expression has no effect in primary spermatocytes but produces secondary spermatocytes and spermatids with a 4 C DNA content, suggesting that the first and possibly also the second meiotic division is abolished. Expression of Rec8-N in oocytes causes chromosome segregation to be asynchronous and delays its completion by 2-3 hours during anaphase I, probably due to inefficient proteolysis of Rec8-N by separase. Despite this effect, chromosome segregation must be quite accurate as Rec8-N does not greatly reduce female fertility. Our data is consistent with the notion that Rec8 cleavage is important and probably crucial for the resolution of chiasmata in males and females.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Endopeptidases/metabolismo , Meiose/fisiologia , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Cromossomos Artificiais Bacterianos , Endopeptidases/genética , Feminino , Genes myc/fisiologia , Infertilidade Masculina , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Oócitos/citologia , Oócitos/metabolismo , Fragmentos de Peptídeos/metabolismo , Subunidades Proteicas , Separase , Espermatogênese , Coesinas
8.
Curr Biol ; 19(5): 369-80, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19249208

RESUMO

BACKGROUND: Missegregation of chromosomes during meiosis in human females causes aneuploidy, including trisomy 21, and is thought also to be the major cause of age-related infertility. Most errors are thought to occur at the first meiotic division. The high frequency of errors raises questions as to whether the surveillance mechanism known as the spindle assembly checkpoint (SAC) that controls the anaphase-promoting complex or cyclosome (APC/C) operates effectively in oocytes. Experimental approaches hitherto used to inactivate the SAC in oocytes suffer from a number of drawbacks. RESULTS: Bub1 protein was depleted specifically in oocytes with a Zp3-Cre transgene to delete exons 7 and 8 from a floxed BUB1(F) allele. Loss of Bub1 greatly accelerates resolution of chiasmata and extrusion of polar bodies. It also causes defective biorientation of bivalents, massive chromosome missegregation at meiosis I, and precocious loss of cohesion between sister centromeres. By using a quantitative assay for APC/C-mediated securin destruction, we show that the APC/C is activated in an exponential fashion, with activity peaking 12-13 hr after GVBD, and that this process is advanced by 5 hr in oocytes lacking Bub1. Importantly, premature chiasmata resolution does not occur in Bub1-deficient oocytes also lacking either the APC/C's Apc2 subunit or separase. Finally, we show that Bub1's kinase domain is not required to delay APC/C activation. CONCLUSIONS: We conclude that far from being absent or ineffective, the SAC largely determines the timing of APC/C and hence separase activation in oocytes, delaying it for about 5 hr.


Assuntos
Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Endopeptidases/metabolismo , Ativação Enzimática , Feminino , Humanos , Masculino , Meiose/fisiologia , Camundongos , Camundongos Transgênicos , Oócitos/citologia , Gravidez , Proteínas Serina-Treonina Quinases/genética , Separase , Complexos Ubiquitina-Proteína Ligase/genética
9.
Cell ; 126(1): 135-46, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16839882

RESUMO

In yeast, resolution of chiasmata in meiosis I requires proteolytic cleavage along chromosome arms of cohesin's Rec8 subunit by separase. Since activation of separase by the anaphase-promoting complex (APC/C) is supposedly not required for meiosis I in Xenopus oocytes, it has been suggested that animal cells might resolve chiasmata by a separase-independent mechanism related to the so-called "prophase pathway" that removes cohesin from chromosome arms during mitosis. By expressing Cre recombinase from a zona pellucida promoter, we have deleted a floxed allele of separase specifically in mouse oocytes. This prevents removal of Rec8 from chromosome arms and resolution of chiasmata. It also hinders extrusion of the first polar body (PBE) and causes female sterility. mRNA encoding wild-type but not catalytically inactive separase restores chiasma resolution. Both types of mRNA restore PBE. Proteolytic activity of separase is therefore essential for Rec8's removal from chromosome arms and for chiasma resolution but not for PBE.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromossomos/genética , Endopeptidases/fisiologia , Meiose/genética , Proteínas Nucleares/genética , Oócitos/metabolismo , Peptídeo Hidrolases/genética , Fosfoproteínas/genética , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Segregação de Cromossomos/genética , Citocinese/genética , Regulação para Baixo/genética , Endopeptidases/genética , Feminino , Deleção de Genes , Genes cdc/fisiologia , Humanos , Masculino , Metáfase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Oócitos/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Separase
10.
J Cell Biol ; 172(6): 847-60, 2006 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-16533945

RESUMO

Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality. Loss of Securin reduces Separase activity because deletion of just one copy of the Separase gene is lethal to embryos lacking Securin. In embryonic fibroblasts, Separase depletion blocks sister chromatid separation but does not prevent other aspects of mitosis, cytokinesis, or chromosome replication. Thus, fibroblasts lacking Separase become highly polyploid. Hepatocytes stimulated to proliferate in vivo by hepatectomy also become unusually large and polyploid in the absence of Separase but are able to regenerate functional livers. Separase depletion in bone marrow causes aplasia and the presumed death of hematopoietic cells other than erythrocytes. Destruction of sister chromatid cohesion by Separase may be a universal feature of mitosis in eukaryotic cells.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Segregação de Cromossomos/genética , Período de Replicação do DNA/genética , Endopeptidases/genética , Mitose/genética , Anáfase/genética , Animais , Proteínas de Transporte/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Desenvolvimento Embrionário/genética , Feminino , Fibroblastos , Genes Letais/genética , Células-Tronco Hematopoéticas/metabolismo , Hepatócitos , Regeneração Hepática/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Poliploidia , Securina , Separase , Coesinas
11.
PLoS Biol ; 3(3): e86, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737064

RESUMO

Cohesion between sister chromatids is essential for their bi-orientation on mitotic spindles. It is mediated by a multisubunit complex called cohesin. In yeast, proteolytic cleavage of cohesin's alpha kleisin subunit at the onset of anaphase removes cohesin from both centromeres and chromosome arms and thus triggers sister chromatid separation. In animal cells, most cohesin is removed from chromosome arms during prophase via a separase-independent pathway involving phosphorylation of its Scc3-SA1/2 subunits. Cohesin at centromeres is refractory to this process and persists until metaphase, whereupon its alpha kleisin subunit is cleaved by separase, which is thought to trigger anaphase. What protects centromeric cohesin from the prophase pathway? Potential candidates are proteins, known as shugoshins, that are homologous to Drosophila MEI-S332 and yeast Sgo1 proteins, which prevent removal of meiotic cohesin complexes from centromeres at the first meiotic division. A vertebrate shugoshin-like protein associates with centromeres during prophase and disappears at the onset of anaphase. Its depletion by RNA interference causes HeLa cells to arrest in mitosis. Most chromosomes bi-orient on a metaphase plate, but precocious loss of centromeric cohesin from chromosomes is accompanied by loss of all sister chromatid cohesion, the departure of individual chromatids from the metaphase plate, and a permanent cell cycle arrest, presumably due to activation of the spindle checkpoint. Remarkably, expression of a version of Scc3-SA2 whose mitotic phosphorylation sites have been mutated to alanine alleviates the precocious loss of sister chromatid cohesion and the mitotic arrest of cells lacking shugoshin. These data suggest that shugoshin prevents phosphorylation of cohesin's Scc3-SA2 subunit at centromeres during mitosis. This ensures that cohesin persists at centromeres until activation of separase causes cleavage of its alpha kleisin subunit. Centromeric cohesion is one of the hallmarks of mitotic chromosomes. Our results imply that it is not an intrinsically stable property, because it can easily be destroyed by mitotic kinases, which are kept in check by shugoshin.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Centrômero/fisiologia , Proteínas Fúngicas/fisiologia , Mitose/fisiologia , Proteínas Nucleares/fisiologia , Sequência de Aminoácidos , Anáfase/fisiologia , Animais , Sequência de Bases , Proteínas Cromossômicas não Histona , Primers do DNA , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Proteínas/química , Proteínas/genética , RNA Interferente Pequeno/genética , Troca de Cromátide Irmã , Coesinas
12.
Genes Dev ; 18(1): 88-98, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14724179

RESUMO

The anaphase-promoting complex or cyclosome (APC/C) is an ubiquitin protein ligase that together with Cdc20 and Cdh1 targets mitotic proteins for degradation by the proteosome. APC-Cdc20 activity during mitosis triggers anaphase by destroying securin and cyclins. APC-Cdh1 promotes degradation of cyclins and other proteins during G(1). We show that loss of APC/C during embryogenesis is early lethal before embryonic day E6.5 (E6.5). To investigate the role of APC/C in quiescent cells, we conditionally inactivated the subunit Apc2 in mice. Deletion of Apc2 in quiescent hepatocytes caused re-entry into the cell cycle and arrest in metaphase, resulting in liver failure. Re-entry into the cell cycle either occurred without any proliferative stimulus or could be easily induced. We demonstrate that the APC has an additional function to prevent hepatocytes from unscheduled re-entry into the cell cycle.


Assuntos
Divisão Celular/genética , Hepatócitos/citologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans , Drosophila melanogaster/citologia , Humanos , Camundongos , Camundongos Knockout , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citologia , Complexos Ubiquitina-Proteína Ligase/deficiência , Complexos Ubiquitina-Proteína Ligase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA