Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 63(2): 143-50, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11169624

RESUMO

N-cadherin and beta1-integrin adhesion and signaling play important roles in growth cone adhesion and guidance. Each of these adhesion receptor systems is composed of multiprotein complexes, and both adhesion and downstream signaling events are regulated through the interaction of protein tyrosine kinases and phosphatases with many of the proteins that make up these complex systems. Work from our laboratory reported that the nonreceptor protein tyrosine phosphatase PTP1B is localized to adherens junctions and focal adhesion complexes and regulates both N-cadherin- and beta1-integrin-mediated adhesion. PTP1B appears to modulate integrin-mediated adhesion through regulation of src activation and cadherin-mediated adhesion through dephosphorylation of beta-catenin. We have continued these studies and report that PTP1B is localized to the tips of growing neurites and that introduction of a noncatalytic mutant of PTP1B into PC12 cells results in inhibition of N-cadherin- and beta1-integrin-mediated neurite outgrowth but is without effect on neurite outgrowth on poly-L-lysine. Moreover, suppressing the level of PTP1B in primary embryonic chick neural retina cells using antisense oligonucleotides also inhibits N-cadherin- and beta1-integrin-mediated neurite outgrowth. Neither of these techniques reduces the levels of expression of either adhesion receptor. We conclude that PTP1B is a regulatory component of the molecular complex required for both N-cadherin and beta1-integrin-mediated axon growth.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Matriz Extracelular/metabolismo , Neuritos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Sistema Nervoso Central/citologia , Embrião de Galinha , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Proteínas de Fluorescência Verde , Indicadores e Reagentes/metabolismo , Integrina beta1/metabolismo , Proteínas Luminescentes/genética , Mutação/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Oligonucleotídeos Antissenso/farmacologia , Células PC12/citologia , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/genética , Ratos , Retina/efeitos dos fármacos , Retina/embriologia , Retina/metabolismo
2.
J Neurochem ; 68(2): 710-4, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9003060

RESUMO

Neuronal survival after ischemic injury is determined through the induction of several biological pathways. We examined whether lubeluzole, an agent efficacious in both clinical and experimental models of cerebral ischemia, modulated the signal transduction mechanisms of nitric oxide (NO), a downstream mediator of anoxic neurodegeneration. Both pretreatment [NO survival = 23 +/- 3%, NO/lubeluzole (750 nM) survival = 63 +/- 2%, p < 0.001] and coadministration [NO survival = 25 +/- 3%, NO/lubeluzole (750 nM) survival = 59 +/- 3%, p < 0.001] of lubeluzole with NO generators equally protected cultured hippocampal neurons in a dose-dependent manner against the toxic effects of NO, suggesting that the agent protects by acutely modifying toxic cellular pathways rather than preconditioning the neuron before injury. The protection observed with lubeluzole was stereospecific but was not limited to pre- or coadministration. Lubeluzole also was found to significantly protect against the toxicity of NO for a period of 4-6 h after NO exposure [NO survival = 31 +/- 2%, NO/lubeluzole (750 nM) survival at 6 h = 56 +/- 3%, p < 0.001]. We conclude that the neuroprotective ability of lubeluzole is unique and involves the direct modulation of the NO pathway. In addition, the mechanisms of NO toxicity are dynamic and reversible processes that, if left unaltered, will lead to neuronal injury. Further investigation of the downstream signal transduction mechanisms below the level of NO generation may elucidate the specific cellular events responsible for neurodegeneration.


Assuntos
Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/fisiologia , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Precondicionamento Isquêmico , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Óxido Nítrico/biossíntese , Óxido Nítrico/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA