RESUMO
The field of airway biology research relies primarily on in vitro and in vivo models of disease and injury. The use of ex vivo models to study airway injury and cell-based therapies remains largely unexplored although such models have the potential to overcome certain limitations of working with live animals and may more closely replicate in vivo processes than in vitro models can. Here, we characterized a ferret ex vivo tracheal injury and cell engraftment model. We describe a protocol for whole-mount staining of cleared tracheal explants, and showed that it provides a more comprehensive structural overview of the surface airway epithelium (SAE) and submucosal glands (SMGs) than 2D sections, revealing previously underappreciated structural anatomy of tracheal innervation and vascularization. Using an ex vivo model of tracheal injury, we evaluated the injury responses in the SAE and SMGs that turned out to be consistent with published in vivo work. We used this model to assess factors that influence engraftment of transgenic cells, providing a system for optimizing cell-based therapies. Finally, we developed a novel 3D-printed reusable culture chamber that enables live imaging of tracheal explants and differentiation of engrafted cells at an air-liquid interface. These approaches promise to be useful for modeling pulmonary diseases and testing therapies. Graphical abstract1,2. We describe here a method for differential mechanical injury of ferret tracheal explants that can be used to evaluate airway injury responses ex vivo. 3. Injured explants can be cultured at ALI (using the novel tissue-transwell device on the right) and submerged long-term to evaluate tissue-autonomous regeneration responses. 4. Tracheal explants can also be used for low throughput screens of compounds to improve cell engraftment efficiency or can be seeded with particular cells to model a disease phenotype. 5. Lastly, we demonstrate that ex vivo-cultured tracheal explants can be evaluated by various molecular assays and by immunofluorescent imaging that can be performed live using our custom-designed tissue-transwell.
RESUMO
Using unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model. Melanoma cells exiting fragments of three independent melanomas or from secondary cultures derived from them, and cells from the melanoma line HTB-66, all underwent coalescence mediated by specialized cells in the 3D model. Normal melanocytes did not. However, coalescence of melanoma cells differed from that of breast-derived tumorigenic cell lines in that they 1) coalesced immediately, 2) underwent coalescence as individual cells as well as aggregates, 3) underwent coalescence far faster and 4) ultimately formed long, flat, fenestrated aggregates that were extremely dynamic. A screen of 51 purified monoclonal antibodies (mAbs) targeting cell surface-associated molecules revealed that two mAbs, anti-beta 1 integrin/(CD29) and anti-CD44, blocked melanoma cell coalescence. They also blocked coalescence of tumorigenic cells derived from a breast tumor. These results add weight to the commonality of coalescence as a characteristic of tumorigenic cells, as well as the usefulness of the 3D Matrigel model and software for both investigating the mechanisms regulating tumorigenesis and screening for potential anti-tumorigenesis mAbs.
Assuntos
Anticorpos Monoclonais/farmacologia , Receptores de Hialuronatos/metabolismo , Melanoma/metabolismo , Biomarcadores , Adesão Celular , Linhagem Celular , Rastreamento de Células , Colágeno , Combinação de Medicamentos , Humanos , Integrina beta1/metabolismo , Laminina , Melanócitos/metabolismo , Melanoma/patologia , Fenótipo , Proteoglicanas , Esferoides Celulares , Células Tumorais CultivadasRESUMO
A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis.
Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares , Macrófagos , Imagem Óptica/métodos , Cultura Primária de Células , Células Tumorais Cultivadas , Microambiente TumoralRESUMO
This chapter describes 2D quantitative methods for motion analysis as well as 3D motion analysis and reconstruction methods. Emphasis is placed on the analysis of dynamic cell shape changes that occur through extension and retraction of force generating structures such as pseudopodia and lamellipodia. Quantitative analysis of these structures is an underutilized tool in the field of cell migration. Our intent, therefore, is to present methods that we developed in an effort to elucidate mechanisms of basic cell motility, directed cell motion during chemotaxis, and metastasis. We hope to demonstrate how application of these methods can more clearly define alterations in motility that arise due to specific mutations or disease and hence, suggest mechanisms or pathways involved in normal cell crawling and treatment strategies in the case of disease. In addition, we present a 4D tumorigenesis model for high-resolution analysis of cancer cells from cell lines and human cancer tissue in a 3D matrix. Use of this model led to the discovery of the coalescence of cancer cell aggregates and unique cell behaviors not seen in normal cells or normal tissue. Graphic illustrations to visually display and quantify cell shape are presented along with algorithms and formulae for calculating select 2D and 3D motion analysis parameters.
Assuntos
Imageamento Tridimensional/métodos , Movimento , Linhagem Celular , Quimiotaxia , Dictyostelium/citologia , Humanos , Neutrófilos/citologia , Fenômenos ÓpticosRESUMO
We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity), and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 µm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named "facilitators" and "probes." A third cell type, the "dervish", is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.
Assuntos
Agregação Celular/fisiologia , Imageamento Tridimensional/métodos , Modelos Biológicos , Neoplasias/fisiopatologia , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colágeno , Combinação de Medicamentos , Humanos , Laminina , ProteoglicanasRESUMO
Recently, we demonstrated that tumorigenic cell lines and fresh tumor cells seeded in a 3D Matrigel model, first grow as clonal islands (primary aggregates), then coalesce through the formation and contraction of cellular cables. Non-tumorigenic cell lines and cells from normal tissue form clonal islands, but do not form cables or coalesce. Here we show that as little as 5% tumorigenic cells will actively mediate coalescence between primary aggregates of majority non-tumorigenic or non-cancerous cells, by forming cellular cables between them. We suggest that this newly discovered, specialized characteristic of tumorigenic cells may explain, at least in part, why tumors contain primarily non-tumorigenic cells.
RESUMO
Huntington׳s disease is a neurodegenerative disorder, attributable to an expanded trinucleotide repeat in the coding region of the human HTT gene, which encodes the protein huntingtin. These mutations lead to huntingtin fragment inclusions in the striatum of the brain. However, the exact function of normal huntingtin and the defect causing the disease remain obscure. Because there are indications that huntingtin plays a role in Ca(2+) homeostasis, we studied the deletion mutant of the HTT ortholog in the model developmental system Dictyostelium discoideum, in which Ca(2+) plays a role in receptor-regulated behavior related to the aggregation process that leads to multicellular morphogenesis. The D. discoideum htt(-)-mutant failed to undergo both K(+)-facilitated chemotaxis in spatial gradients of the major chemoattractant cAMP, and chemotaxis up a spatial gradient of Ca(2+), but behaved normally in Ca(2+)-facilitated cAMP chemotaxis and Ca(2+)-dependent flow-directed motility. This was the same phenotypic profile of the null mutant of Nhel, a monovalent cation/H(+)exchanger. The htt(-)-mutant also failed to orient correctly during natural aggregation, as was the case for the Nhel mutant. Moreover, in a K(+)-based buffer the normal localization of actin was similarly defective in both htt(-) and nhe1(-) cells in a K(+)-based buffer, and the normal localization of Nhe1 was disrupted in the htt(-) mutant. These observations demonstrate that Htt and Nhel play roles in the same specific cation-facilitated behaviors and that Nhel localization is directly or indirectly regulated by Htt. Similar cation-dependent behaviors and a similar relationship between Htt and Nhe1 have not been reported for mammalian neurons and deserves investigation, especially as it may relate to Huntington׳s disease.
Assuntos
Proteínas de Transporte de Cátions/genética , Quimiotaxia/genética , Dictyostelium/genética , Proteínas de Protozoários/genética , Trocadores de Sódio-Hidrogênio/genética , Actinas/metabolismo , Cálcio/metabolismo , Agregação Celular/genética , AMP Cíclico/metabolismo , Dictyostelium/fisiologia , Deleção de Genes , Doença de Huntington , Potássio/metabolismoRESUMO
Interferon regulatory factor 6 (Irf6) regulates keratinocyte proliferation and differentiation. In this study, we tested the hypothesis that Irf6 regulates cellular migration and adhesion. Irf6-deficient embryos at 10.5â days post-conception failed to close their wound compared with wild-type embryos. In vitro, Irf6-deficient murine embryonic keratinocytes were delayed in closing a scratch wound. Live imaging of the scratch showed deficient directional migration and reduced speed in cells lacking Irf6. To understand the underlying molecular mechanisms, cell-cell and cell-matrix adhesions were investigated. We show that wild-type and Irf6-deficient keratinocytes adhere similarly to all matrices after 60â min. However, Irf6-deficient keratinocytes were consistently larger and more spread, a phenotype that persisted during the scratch-healing process. Interestingly, Irf6-deficient keratinocytes exhibited an increased network of stress fibers and active RhoA compared with that observed in wild-type keratinocytes. Blocking ROCK, a downstream effector of RhoA, rescued the delay in closing scratch wounds. The expression of Arhgap29, a Rho GTPase-activating protein, was reduced in Irf6-deficient keratinocytes. Taken together, these data suggest that Irf6 functions through the RhoA pathway to regulate cellular migration.
Assuntos
Movimento Celular/fisiologia , Fatores Reguladores de Interferon/fisiologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Cultura Embrionária , Feminino , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Mutantes , Gravidez , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTPRESUMO
Behavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shear-induced directed movement, and reorientation in the front of waves of cAMP during natural aggregation. The phenotypes of the mutants mhckA(-) and mhckC(-) were highly similar to that of the Ca(2+) channel/receptor mutant iplA(-) and the myosin II phosphorylation mutant 3XALA, which produces constitutively unphosphorylated myosin II. These results demonstrate that IplA, MhckA and MhckC play a selective role in chemotaxis in a spatial gradient of Ca(2+), but not cAMP, and suggest that Ca(2+) chemotaxis plays a role in the orientation of cells in the front of cAMP waves during natural aggregation.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina , Cálcio , Movimento Celular , Dictyostelium , Proteínas de Protozoários , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Agregação Celular/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Quimiotaxia/genética , Quimiotaxia/fisiologia , AMP Cíclico/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pseudópodes/metabolismo , Deleção de SequênciaRESUMO
During aggregation of Dictyostelium discoideum, nondissipating, symmetrical, outwardly moving waves of cAMP direct cells towards aggregation centers. It has been assumed that the spatial and temporal characteristics of the front and back of each cAMP wave regulate both chemokinesis and chemotaxis. However, during the period preceding aggregation, cells acquire not only the capacity to chemotax in a spatial gradient of cAMP, but also in a spatial gradient of Ca(2+). The null mutant of the putative IplA Ca(2+) channel gene, iplA(-), undergoes normal chemotaxis in spatial gradients of cAMP and normal chemokinetic responses to increasing temporal gradients of cAMP, both generated in vitro. However, iplA(-) cells lose the capacity to undergo chemotaxis in response to a spatial gradient of Ca(2+), suggesting that IplA is either the Ca(2+) chemotaxis receptor or an essential component of the Ca(2+) chemotaxis regulatory pathway. In response to natural chemotactic waves generated by wild-type cells, the chemokinetic response of iplA(-) cells to the temporal dynamics of the cAMP wave is intact, but the capacity to reorient in the direction of the aggregation center at the onset of each wave is lost. These results suggest that transient Ca(2+) gradients formed between cells at the onset of each natural cAMP wave augment reorientation towards the aggregation center. If this hypothesis proves correct, it will provide a more complex contextual framework for interpreting D. discoideum chemotaxis.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Quimiotaxia , Dictyostelium/citologia , Dictyostelium/metabolismo , Canais de Cálcio/química , AMP Cíclico/metabolismo , Dictyostelium/químicaRESUMO
Using a newly developed microfluidic chamber, we have demonstrated in vitro that Ca(2+) functions as a chemoattractant of aggregation-competent Dictyostelium discoideum amoebae, that parallel spatial gradients of cAMP and Ca(2+) are more effective than either alone, and that cAMP functions as a stronger chemoattractant than Ca(2+). Effective Ca(2+) gradients are extremely steep compared with effective cAMP gradients. This presents a paradox because there is no indication to date that steep Ca(2+) gradients are generated in aggregation territories. However, given that Ca(2+) chemotaxis is co-acquired with cAMP chemotaxis during development, we speculate on the role that Ca(2+) chemotaxis might have and the possibility that steep, transient Ca(2+) gradients are generated during natural aggregation in the interstitial regions between cells.
Assuntos
Cálcio/metabolismo , Quimiotaxia/fisiologia , AMP Cíclico/metabolismo , Dictyostelium/fisiologia , Cálcio/química , Linhagem Celular , Movimento Celular/fisiologia , AMP Cíclico/química , Técnicas Analíticas Microfluídicas , Verduras/fisiologiaRESUMO
For decades, Dictyostelium discoideum has been an efficacious and attractive model system for the study of cell motility, primarily because cells become highly motile during the transition from growth phase to aggregation competence and because the haploid genome is readily amenable to mutation. These crawling amoebae, as well as other motile cells such as polymorphonuclear neutrophils (PMNs), extend pseudopodia, retract pseudopodia, and translocate across a substratum even in the absence of chemoattractant. This phenomenon, referred to as basic motile behavior, has been investigated in Dictyostelium through analysis of cytoskeletal mutants. Likewise, many chemotactic signal transduction pathways and networks have been inferred from studies of Dictyostelium mutants. However, before concluding from mutational analyses that a particular molecule or protein plays a role in chemotaxis, it is imperative to first precisely define its contribution, if any, to basic motile behavior. Here, we describe two-dimensional and three-dimensional technologies that can be coupled with 2D and 3D Dynamic Image Analysis System (2D and 3D-DIAS) software for the analysis of cell motility, shape changes, pseudopod formation, and localization of tagged molecules during basic motile behavior. In addition, we describe a method to analyze the 3D trajectories of microspheres attached to the surface of crawling Dictyostelium cells. We include information on microscopy, image acquisition techniques, and computer hardware that could be reproduced in a typical laboratory setting for motion analysis using 2D and 3D-DIAS software. Finally, we highlight features available in DIAS that have proven insightful in identifying defects in basic motile behavior exhibited by various cytoskeletal and putative signal transduction mutants.
Assuntos
Movimento Celular/fisiologia , Dictyostelium/citologia , Microscopia/métodos , Animais , Dictyostelium/metabolismo , Microscopia Confocal/métodosRESUMO
2D- and 3D-Dynamic Image Analysis Systems (2D- and 3D-DIAS) for quantitative analysis of cell motility and chemotaxis are described. Particular attention is given to protocols that have proven useful in the quantitation of cell shape changes and pseudopod dynamics during basic cell motility (i.e. crawling in the absence of a chemotactic or other type of extracellular signal) and directed motion. In addition, methods provided, highlight the applicability of this approach to the accurate phenotypic characterizations of cytoskeletal mutations in Dictyostelium discoideum, cytoskeletal alterations in metastatic cells, and cytoskeletal defects in chemotactically defective polymorphonuclear neutrophils.
Assuntos
Movimento Celular/genética , Citoesqueleto/genética , Dictyostelium/metabolismo , Imageamento Tridimensional/métodos , Animais , Células Cultivadas , Quimiotaxia/genética , Citoesqueleto/metabolismo , Dictyostelium/genética , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Microesferas , Mutação , Neutrófilos/metabolismo , Tamanho da Partícula , Pseudópodes/genética , Pseudópodes/metabolismoRESUMO
The movements of Dictyostelium discoideum amoebae translocating on a glass surface in the absence of chemoattractant have been reconstructed at 5-second intervals and motion analyzed by employing 3D-DIAS software. A morphometric analysis of pseudopods, the main cell body, and the uropod provides a comprehensive description of the basic motile behavior of a cell in four dimensions (4D), resulting in a list of 18 characteristics. A similar analysis of the myosin II phosphorylation mutant 3XASP reveals a role for the cortical localization of myosin II in the suppression of lateral pseudopods, formation of the uropod, cytoplasmic distribution of cytoplasm in the main cell body, and efficient motility. The results of the morphometric analysis suggest that pseudopods, the main cell body, and the uropod represent three motility compartments that are coordinated for efficient translocation. It provides a contextual framework for interpreting the effects of mutations, inhibitors, and chemoattractants on the basic motile behavior of D. discoideum. The generality of the characteristics of the basic motile behavior of D. discoideum must now be tested by similar 4D analyses of the motility of amoeboid cells of higher eukaryotic cells, in particular human polymorphonuclear leukocytes.
Assuntos
Movimento Celular , Dictyostelium/citologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Dictyostelium/química , Dictyostelium/genética , Dictyostelium/metabolismo , Processamento de Imagem Assistida por Computador , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Fosforilação , Transporte Proteico , Proteínas de Protozoários/genéticaRESUMO
We have investigated the effects of inhibiting the expression of cofilin to understand its role in protrusion dynamics in metastatic tumor cells, in particular. We show that the suppression of cofilin expression in MTLn3 cells (an apolar randomly moving amoeboid metastatic tumor cell) caused them to extend protrusions from only one pole, elongate, and move rectilinearly. This remarkable transformation was correlated with slower extension of fewer, more stable lamellipodia leading to a reduced turning frequency. Hence, the loss of cofilin caused an amoeboid tumor cell to assume a mesenchymal-type mode of movement. These phenotypes were correlated with the loss of uniform chemotactic sensitivity of the cell surface to EGF stimulation, demonstrating that to chemotax efficiently, a cell must be able to respond to chemotactic stimulation at any region on its surface. The changes in cell shape, directional migration, and turning frequency were related to the re-localization of Arp2/3 complex to one pole of the cell upon suppression of cofilin expression.
Assuntos
Fatores de Despolimerização de Actina/metabolismo , Movimento Celular/fisiologia , Neoplasias Mamárias Experimentais/patologia , Fatores de Despolimerização de Actina/genética , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Tamanho Celular , Quimiotaxia/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Feminino , Microscopia de Vídeo , Modelos Biológicos , Metástase Neoplásica , RNA Interferente Pequeno/farmacologia , Fatores de Tempo , TransfecçãoRESUMO
It has been suggested that the phosphatydylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] phosphatase and tensin homolog PTEN plays a fundamental role in Dictyostelium discoideum chemotaxis. To identify that role, the behavior of a pten(-) mutant was quantitatively analyzed using two-dimensional and three-dimensional computer-assisted methods. pten(-) cells were capable of polarizing and translocating in the absence of attractant, and sensing and responding to spatial gradients, temporal gradients and natural waves of attractant. However, all of these responses were compromised (i.e. less efficient) because of the fundamental incapacity of pten(-) cells to suppress lateral pseudopod formation and turning. This defect was equally manifested in the absence, as well as presence, of attractant. PTEN, which is constitutively localized in the cortex of polarized cells, was found essential for the attractant-stimulated increase in cortical myosin II and F-actin that is responsible for the increased suppression of pseudopods during chemotaxis. PTEN, therefore, plays a fundamental role in the suppression of lateral pseudopod formation, a process essential for the efficiency of locomotion and chemotaxis, but not in directional sensing.
Assuntos
Movimento Celular/fisiologia , Quimiotaxia/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas de Protozoários/metabolismo , Pseudópodes/fisiologia , Actinas/metabolismo , Animais , Fenômenos Fisiológicos Celulares , Polaridade Celular/fisiologia , Fatores Quimiotáticos/metabolismo , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Dictyostelium/fisiologia , Miosina Tipo II/metabolismo , PTEN Fosfo-Hidrolase/isolamento & purificaçãoRESUMO
The chemotactic signal in Dictyostelium is a cAMP wave that is relayed over relatively large distances through a cell population during aggregation. Cells exhibit unique behaviors in response to the different spatial, temporal, and concentration components of the cAMP wave, suggesting that distinct signal transduction pathways are evoked in each of the various phases of the wave. For this reason, we designed a set of experimental protocols to test responses of normal and mutant Dictyostelium amoebae to the different components of a wave of chemoattractant. We then used computer-assisted two- (2D) and three-dimensional (3D) technologies (2D and 3D Dynamic Image Analysis System [DIAS]) for analysis of cells in the absence of a chemotactic signal (basic motile behavior) and in response to the temporal, spatial, and concentration components of the wave. As a result, we have elucidated parallel and independent pathways activated by specific phases of the cAMP wave. Likewise, human polymorphonuclear neutrophils (PMNs) respond to experimentally applied waves of the chemotactic peptide fMLP, and also exhibit discrete behavioral responses to the different phases. Using Dictyostelium as a paradigm, we applied our protocols to normal and diseased human PMNs and precisely defined a chemotactic defect. In this chapter, we describe methods for quantifying behaviors in Dictyostelium amoebae, PMNs, and other amoeboid cells using 2D and 3D DIAS. These methods are useful in the reconstruction and motion analysis of most migrating cells with transmitted and/or confocal microscopy.
Assuntos
Movimento Celular/fisiologia , Quimiotaxia , Dictyostelium/citologia , Imageamento Tridimensional/métodos , Neutrófilos/citologia , Animais , AMP Cíclico/farmacologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologiaRESUMO
The Shwachman-Bodian-Diamond syndrome (SBDS) is an autosomal disorder with multisystem defects. The Shwachman-Bodian-Diamond syndrome gene (SBDS), which contains mutations in a majority of SBDS patients, encodes a protein of unknown function, although it has been strongly implicated in RNA metabolism. There is also some evidence that it interacts with molecules that regulate cytoskeletal organization. Recently, it has been demonstrated by computer-assisted methods that the single behavioral defect of polymorphonuclear leukocytes (PMNs) of SBDS patients is the incapacity to orient correctly in a spatial gradient of chemoattractant. We considered using the social amoeba Dictyostelium discoideum, a model for PMN chemotaxis, an excellent system for elucidating the function of the SBDS protein. We first identified the homolog of SBDS in D. discoideum and found that the amino acids that are altered in human disease were conserved. Given that several proteins involved in chemotactic orientation localize to the pseudopods of cells undergoing chemotaxis, we tested whether the SBDS gene product did the same. We produced an SBDS-GFP chimeric in-frame fusion gene, and generated transformants either with multiple ectopic insertions of the fusion gene or multiple copies of a non-integrated plasmid carrying the fusion gene. In both cases, the SBDS-GFP protein was dispersed equally through the cytoplasm and pseudopods of cells migrating in buffer. However, we observed differential enrichment of SBDS in the pseudopods of cells treated with the chemoattractant cAMP, suggesting that the SBDS protein may play a role in chemotaxis. In light of these results, we discuss how SBDS might function during chemotaxis.
Assuntos
Quimiotaxia/fisiologia , Dictyostelium/citologia , Dictyostelium/metabolismo , Proteínas , Pseudópodes/metabolismo , Proteínas de Ligação a RNA , Sequência de Aminoácidos , Animais , Dictyostelium/genética , Humanos , Dados de Sequência Molecular , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transformação GenéticaRESUMO
To define the role that RasC plays in motility and chemotaxis, the behavior of a rasC null mutant, rasC-, in buffer and in response to the individual spatial, temporal, and concentration components of a natural cyclic AMP (cAMP) wave was analyzed by using computer-assisted two-dimensional and three-dimensional motion analysis systems. These quantitative studies revealed that rasC- cells translocate at the same velocity and exhibit chemotaxis up spatial gradients of cAMP with the same efficiency as control cells. However, rasC- cells exhibit defects in maintaining anterior-posterior polarity along the substratum and a single anterior pseudopod when translocating in buffer in the absence of an attractant. rasC- cells also exhibit defects in their responses to both the increasing and decreasing temporal gradients of cAMP in the front and the back of a wave. These defects result in the inability of rasC- cells to exhibit chemotaxis in a natural wave of cAMP. The inability to respond normally to temporal gradients of cAMP results in defects in the organization of the cytoskeleton, most notably in the failure of both F actin and myosin II to exit the cortex in response to the decreasing temporal gradient of cAMP in the back of the wave. While the behavioral defect in the front of the wave is similar to that of the myoA-/myoF- myosin I double mutant, the behavioral and cytoskeletal defects in the back of the wave are similar to those of the S13A myosin II regulatory light-chain phosphorylation mutant. Expression array data support the premise that the behavioral defects exhibited by the rasC- mutant are the immediate result of the absence of RasC function.
Assuntos
Movimento Celular/fisiologia , Quimiotaxia/fisiologia , AMP Cíclico/metabolismo , Dictyostelium/fisiologia , Proteínas de Protozoários/metabolismo , Proteínas ras/metabolismo , Animais , Citoesqueleto/metabolismo , Dictyostelium/genética , Mutação/genética , Miosina Tipo II/metabolismo , Miosinas/metabolismo , Fosforilação , Proteínas de Protozoários/genética , Pseudópodes/metabolismo , Proteínas ras/genéticaRESUMO
Most cell types express two distinct forms of myosin I, amoeboid and short, distinguished by differences in their tail domains. Both types of myosin I have been implicated in the regulation of pseudopod formation in Dictyostelium discoideum. We examined three members of the myosin I family, one amoeboid, MyoB, and two short, MyoA and MyoB, for shared, unique and redundant functions in motility and chemotaxis. We used computer-assisted methods for reconstructing and motion analyzing cells, and experimental protocols for assessing the basic motile behavior of mutant cells in buffer and the responses of these cells to the individual spatial, temporal and concentration components of the natural wave of the chemoattractant cAMP. Analysis of both single and double mutants revealed that all three myosins play independent roles in suppressing lateral pseudopod formation in buffer and during chemotaxis. One, MyoB, also plays a unique role in priming cells to respond to the increasing temporal cAMP gradient in the front of a wave, while MyoF plays a unique role in maintaining the elongate, polarized shape of a cell in buffer, during chemotaxis in a spatial gradient of cAMP and in the front of a cAMP wave. Finally, MyoA and MyoF play redundant roles in the velocity response to the increasing temporal cAMP gradient in the front of a wave. These results, therefore, reveal an unexpected variety of shared, unique and redundant functions of the three class I myosins in motility and chemotaxis. Interestingly, the combined defects of the myosin I mutants are similar to those of a single mutant with constitutive PKA activity, suggesting that PKA plays a role in the regulation of all three class I myosins.