Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 95(12): e29280, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054507

RESUMO

Cycling hypoxia (cycH) is a prevalent form of tumor hypoxia that is characterized by exposure of tumor cells to recurrent phases of hypoxia and reoxygenation. CycH has been associated with a particularly aggressive cellular phenotype of tumor cells and increased therapy resistance. By performing comparative analyses under normoxia, physoxia, chronic hypoxia, and cycH, we here uncover distinct effects of cycH on the phenotype of human papillomavirus (HPV)-positive cervical cancer cells. We show that-other than under chronic hypoxia-viral E6/E7 oncogene expression is largely maintained under cycH as is the E6/E7-dependent regulation of p53 and retinoblastoma protein. Further, cycH enables HPV-positive cancer cells to evade prosenescent chemotherapy, similar to chronic hypoxia. Moreover, cells under cycH exhibit a particularly pronounced resistance to the proapoptotic effects of Cisplatin. Quantitative proteome analyses reveal that cycH induces a unique proteomic signature in cervical cancer cells, which includes a significant downregulation of luminal lysosomal proteins. These encompass the potentially proapoptotic cathepsins B and cathepsin L, which, however, appear not to affect the response to Cisplatin under any of the O2 conditions tested. Rather, we show that the proapoptotic Caspase 8/BH3-interacting domain death agonist (BID) cascade plays a pivotal role for the efficiency of Cisplatin-induced apoptosis in HPV-positive cancer cells under all investigated O2 conditions. In addition, we provide evidence that BID activation by Cisplatin is impaired under cycH, which could contribute to the high resistance to the proapoptotic effects of Cisplatin. Collectively, this study provides the first insights into the profound phenotypic alterations induced by cycH in HPV-positive cancer cells, with implications for their therapeutic susceptibility.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Proteômica , Proteínas Repressoras/genética , Hipóxia , Proteínas E7 de Papillomavirus/genética
2.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34638479

RESUMO

The iron-chelating drug ciclopirox (CPX) may possess therapeutic potential for cancer treatment, including cervical cancer. As is observed for other chemotherapeutic drugs, CPX can induce senescence or apoptosis in cervical cancer cells which could differently affect their therapy response. The present study aims to gain insights into the determinants which govern the switch between senescence and apoptosis in cervical cancer cells. We performed proteome analyses, proliferation studies by live-cell imaging and colony formation assays, senescence and apoptosis assays, and combination treatments of CPX with inhibitors of oxidative phosphorylation (OXPHOS) or glycolysis. We found that CPX downregulates OXPHOS factors and facilitates the induction of apoptosis under limited glucose availability, an effect which is shared by classical OXPHOS inhibitors. Under increased glucose availability, however, CPX-induced apoptosis is prevented and senescence is induced, an activity which is not exerted by classical OXPHOS inhibitors, but by other iron chelators. Moreover, we show that the combination of CPX with glycolysis inhibitors blocks cervical cancer proliferation in a synergistic manner. Collectively, our results reveal that the phenotypic response of cervical cancer cells towards CPX is strongly dependent on glucose availability, link the pro-apoptotic and pro-senescent activities of CPX to its bifunctionality as an OXPHOS inhibitor and iron chelator, respectively, and provide a rationale for combining CPX with glycolysis inhibitors.

3.
Sci Transl Med ; 13(609): eabe6805, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34516824

RESUMO

Metastasis is the primary cause of cancer-related mortality. Tumor cell interactions with cells of the vessel wall are decisive and potentially rate-limiting for metastasis. The molecular nature of this cross-talk is, beyond candidate gene approaches, hitherto poorly understood. Using endothelial cell (EC) bulk and single-cell transcriptomics in combination with serum proteomics, we traced the evolution of the metastatic vascular niche in surgical models of lung metastasis. Temporal multiomics revealed that primary tumors systemically reprogram the body's vascular endothelium to perturb homeostasis and to precondition the vascular niche for metastatic growth. The vasculature with its enormous surface thereby serves as amplifier of tumor-induced instructive signals. Comparative analysis of lung EC gene expression and secretome identified the transforming growth factor­ß (TGFß) pathway specifier LRG1, leucine-rich alpha-2-glycoprotein 1, as an early instructor of metastasis. In the presence of a primary tumor, ECs systemically up-regulated LRG1 in a signal transducer and activator of transcription 3 (STAT3)­dependent manner. A meta-analysis of retrospective clinical studies revealed a corresponding up-regulation of LRG1 concentrations in the serum of patients with cancer. Functionally, systemic up-regulation of LRG1 promoted metastasis in mice by increasing the number of prometastatic neural/glial antigen 2 (NG2)+ perivascular cells. In turn, genetic deletion of Lrg1 hampered growth of lung metastasis. Postsurgical adjuvant administration of an LRG1-neutralizing antibody delayed metastatic growth and increased overall survival. This study has established a systems map of early primary tumor-induced vascular changes and identified LRG1 as a therapeutic target for metastasis.


Assuntos
Glicoproteínas , Neoplasias , Glicoproteínas/genética , Humanos , Neoplasias/genética
4.
Int J Cancer ; 149(5): 1137-1149, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33844847

RESUMO

Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The viral E6/E7 oncogenes maintain the malignant growth of HPV-positive cancer cells. Targeted E6/E7 inhibition results in efficient induction of cellular senescence, which could be exploited for therapeutic purposes. Here we show that viral E6/E7 expression is strongly downregulated by Metformin in HPV-positive cervical cancer and head and neck cancer cells, both at the transcript and protein level. Metformin-induced E6/E7 repression is glucose and PI3K-dependent but-other than E6/E7 repression under hypoxia-AKT-independent. Proteome analyses reveal that Metformin-induced HPV oncogene repression is linked to the downregulation of cellular factors associated with E6/E7 expression in HPV-positive cancer biopsies. Notably, despite efficient E6/E7 repression, Metformin induces only a reversible proliferative stop in HPV-positive cancer cells and enables them to evade senescence. Metformin also efficiently blocks senescence induction in HPV-positive cancer cells in response to targeted E6/E7 inhibition by RNA interference. Moreover, Metformin treatment enables HPV-positive cancer cells to escape from chemotherapy-induced senescence. These findings uncover profound effects of Metformin on the virus/host cell interactions and the phenotype of HPV-positive cancer cells with implications for therapy-induced senescence, for attempts to repurpose Metformin as an anticancer agent and for the development of E6/E7-inhibitory therapeutic strategies.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metformina/farmacologia , Papillomaviridae/efeitos dos fármacos , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Humanos , Hipoglicemiantes/farmacologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Proteoma/efeitos dos fármacos , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
5.
mBio ; 10(1)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755508

RESUMO

Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia.IMPORTANCE Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells.


Assuntos
Hipóxia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Oncogênicas Virais/biossíntese , Papillomaviridae/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Regulação para Baixo , Interações Hospedeiro-Patógeno , Humanos
6.
Viruses ; 9(7)2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28678198

RESUMO

Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The expression of the viral E6/E7 oncogenes plays a key role for HPV-linked oncogenesis. It recently has been found that low oxygen concentrations ("hypoxia"), as present in sub-regions of HPV-positive cancers, strongly affect the interplay between the HPV oncogenes and their transformed host cell. As a result, a state of dormancy is induced in hypoxic HPV-positive cancer cells, which is characterized by a shutdown of viral oncogene expression and a proliferative arrest that can be reversed by reoxygenation. In this review, these findings are put into the context of the current concepts of both HPV-linked carcinogenesis and of the effects of hypoxia on tumor biology. Moreover, we discuss the consequences for the phenotype of HPV-positive cancer cells as well as for their clinical behavior and response towards established and prospective therapeutic strategies.


Assuntos
Interações Hospedeiro-Patógeno , Hipóxia , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/fisiologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Carcinogênese , Proliferação de Células , Feminino , Humanos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA