Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 20(12): 1776-1784, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-35816343

RESUMO

African American (AA) families have the highest risk of prostate cancer. However, the genetic factors contributing to prostate cancer susceptibility in AA families remain poorly understood. We performed whole-exome sequencing of one affected and one unaffected brother in an AA family with hereditary prostate cancer. The novel non-synonymous variants discovered only in the affected individuals were further analyzed in all affected and unaffected men in 20 AA-PC families. Here, we report one rare recurrent ADPRHL1 germline mutation (c.A233T; p.D78V) in four of the 20 families affected by prostate cancer. The mutation co-segregates with prostate cancer in two families and presents in two affected men in the other two families, but was absent in 170 unrelated healthy AA men. Functional characterization of the mutation in benign prostate cells showed aberrant promotion of cell proliferation, whereas expression of the wild-type ADPRHL1 in prostate cancer cells suppressed cell proliferation and oncogenesis. Mechanistically, the ADPRHL1 mutant activates PARP1, leading to an increased H2O2 or cisplatin-induced DNA damage response for prostate cancer cell survival. Indeed, the PARP1 inhibitor, olaparib, suppresses prostate cancer cell survival induced by mutant ADPRHL1. Given that the expression levels of ADPRHL1 are significantly high in normal prostate tissues and reduce stepwise as Gleason scores increase in tumors, our findings provide genetic, biochemical, and clinicopathological evidence that ADPRHL1 is a tumor suppressor in prostate tissue. A loss of function mutation in ADPRHL1 induces prostate tumorigenesis and confers prostate cancer susceptibility in high-risk AA families. IMPLICATIONS: This study highlights a potential strategy for ADPRHL1 mutation detection in prostate cancer-risk assessment and a potential therapeutic application for individuals with prostate cancer in AA families.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias da Próstata , Humanos , Masculino , Negro ou Afro-Americano/genética , Peróxido de Hidrogênio , Gradação de Tumores , Poli(ADP-Ribose) Polimerase-1/genética , Neoplasias da Próstata/patologia
2.
Toxicol Appl Pharmacol ; 380: 114646, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278917

RESUMO

Glioblastomas are the most aggressive of malignant brain cancers with a median patient survival of approximately 18 months. We recently demonstrated that Tet methylcytosine dioxygenase 1(TET1) is involved in cellular responses to ionizing radiation (IR) in glial-, glioblastoma-, and non-tumor-derived cells. This study used a lentiviral-mediated knockdown of TET1 to further dissect the contribution of TET1 to the DNA damage response in glial cell lines by evaluating its role in DNA repair. TET1-deficient glial cell lines displayed attenuated cytotoxicity compared to non-targeted knockdown after treatment with IR but these differences were not observed between control and TET1 deficient in response to inhibitors of Na+/K+-ATPase. Additionally, the percentage of glial cells displaying γH2A.x foci was greatly reduced in TET1-deficient glial cells compared to non-targeted knockdown conditions in response to IR and topoisomerase inhibitors. We also observed a lower percentage and a delay in 53BP1 foci formation, a marker of non-homologous end-joining, in response to IR and topoisomerase inhibitors in TET1-deficient glial cells. DNA-PK, another marker of non-homologous end-joining, was also lower in TET1-deficient glial cell lines. Interestingly, TET1-deficient glial cells displayed higher numbers of DNA strand breaks compared to control cells and repaired DNA breaks less efficiently in Comet assays. We suggest that attenuated DNA repair in TET1 deficient gliomas leads to genomic instability, which underlies poor patient survival.


Assuntos
Reparo do DNA , Oxigenases de Função Mista/genética , Neuroglia , Proteínas Proto-Oncogênicas/genética , Radiação Ionizante , Linhagem Celular , Dano ao DNA , Glioma/genética , Humanos
3.
Exp Mol Med ; 50(7): 1-8, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054487

RESUMO

Prostate cancer (PCa) is the second most common cancer in men. Androgen receptor (AR) signaling pathway plays a crucial role in prostate development and homeostasis. Dysregulation of this pathway activates AR leading to PCa pathogenesis and progression. AR binds testosterone and other male hormones, which then undergoes post-translational modification for AR nuclear translocation and transcriptional activation. AR activation by post-translational modification is thus imperative for PCa cell growth and survival. Identification and understanding of the pathological and mechanistic roles of AR modifications may increase our understanding of AR activation in PCa and provide new therapeutic options. Recently, AR acetylation has been described as an important step for AR activation. Upregulation of several acetyltransferases has been reported to be associated with PCa progression. Herein, we provide a general understanding of AR acetylation, with a special emphasis on ARD1, and potential therapies that may be exploited against the ARD1-AR axis for PCa treatment.


Assuntos
Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Neoplasias da Próstata/metabolismo , Acetilação , Animais , Humanos , Masculino , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Processamento de Proteína Pós-Traducional , Receptores Androgênicos/metabolismo
4.
Epigenetics ; 12(10): 854-864, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28758831

RESUMO

Recent studies have shown that loss of TET1 may play a significant role in the formation of tumors. Because genomic instability is a hallmark of cancer, we examined the potential involvement of 10-11 translocation 1 (TET1) in the DNA damage response (DDR). Here we demonstrate that, in response to clinically relevant doses of ionizing radiation (IR), human glial cells made TET1-deficient with lentiviral vectors displayed greater numbers of colony forming units and lower levels of apoptotic markers compared with glial cells transduced with control vectors; yet, they harbored greater DNA strand breaks. The G2/M check point and expression of cyclin B1 were greatly diminished in TET1-deficient cells, and TET1-deficient cells displayed lower levels of γH2A.x following exposure to IR. Levels of DNA-PKcs, which are DNA-PK complex members, were lower in TET1-deficient cells compared with control cell lines. However, levels of ATM were similar in both cell lines. Cyclin B1, DNA-PKcs, and γH2A.x levels were each rescued by reintroduction of the TET1 catalytic domain. Finally, cytosine methylation within intron 1 of PRKDC, the gene encoding DNA-PKcs, was significantly higher upon depletion of TET1. Taken together, this study illustrates the involvement of TET1 in the different arms of the DDR and suggests its loss results in the continued survival of cells with genomic instability.


Assuntos
Dano ao DNA/efeitos da radiação , Metilação de DNA/genética , Instabilidade Genômica/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Ciclina B1/genética , Citosina/metabolismo , Dano ao DNA/genética , Metilação de DNA/efeitos da radiação , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/genética , Regulação da Expressão Gênica/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Histonas/genética , Humanos , Lentivirus/genética , Neoplasias/genética , Neoplasias/patologia , Neuroglia/efeitos da radiação , Proteínas Nucleares/genética , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA