Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Comput Sci ; 4(3): 237-250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438786

RESUMO

Single-cell technologies enable high-resolution studies of phenotype-defining molecular mechanisms. However, data sparsity and cellular heterogeneity make modeling biological variability across single-cell samples difficult. Here we present SCORPION, a tool that uses a message-passing algorithm to reconstruct comparable gene regulatory networks from single-cell/nuclei RNA-sequencing data that are suitable for population-level comparisons by leveraging the same baseline priors. Using synthetic data, we found that SCORPION outperformed 12 existing gene regulatory network reconstruction techniques. Using supervised experiments, we show that SCORPION can accurately identify differences in regulatory networks between wild-type and transcription factor-perturbed cells. We demonstrate SCORPION's scalability to population-level analyses using a single-cell RNA-sequencing atlas containing 200,436 cells from colorectal cancer and adjacent healthy tissues. The differences between tumor regions detected by SCORPION are consistent across multiple cohorts as well as with our understanding of disease progression, and elucidate phenotypic regulators that may impact patient survival.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Perfilação da Expressão Gênica , Algoritmos , RNA
2.
J Immunol ; 212(1): 117-129, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019121

RESUMO

The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.


Assuntos
Endotélio Vascular , Perfilação da Expressão Gênica , Masculino , Humanos , Feminino , Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
NAR Cancer ; 5(3): zcad037, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492373

RESUMO

Characterizing inter-tumor heterogeneity is crucial for selecting suitable cancer therapy, as the presence of diverse molecular subgroups of patients can be associated with disease outcome or response to treatment. While cancer subtypes are often characterized by differences in gene expression, the mechanisms driving these differences are generally unknown. We set out to model the regulatory mechanisms driving sarcoma heterogeneity based on patient-specific, genome-wide gene regulatory networks. We developed a new computational framework, PORCUPINE, which combines knowledge on biological pathways with permutation-based network analysis to identify pathways that exhibit significant regulatory heterogeneity across a patient population. We applied PORCUPINE to patient-specific leiomyosarcoma networks modeled on data from The Cancer Genome Atlas and validated our results in an independent dataset from the German Cancer Research Center. PORCUPINE identified 37 heterogeneously regulated pathways, including pathways representing potential targets for treatment of subgroups of leiomyosarcoma patients, such as FGFR and CTLA4 inhibitory signaling. We validated the detected regulatory heterogeneity through analysis of networks and chromatin states in leiomyosarcoma cell lines. We showed that the heterogeneity identified with PORCUPINE is not associated with methylation profiles or clinical features, thereby suggesting an independent mechanism of patient heterogeneity driven by the complex landscape of gene regulatory interactions.

5.
Genome Biol ; 24(1): 45, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894939

RESUMO

Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.


Assuntos
Redes Reguladoras de Genes , Neoplasias , Humanos , Algoritmos , Software , Multiômica , Biologia Computacional/métodos
6.
J Pathol ; 259(1): 56-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219477

RESUMO

Melanoma is a heterogenous malignancy with an unpredictable clinical course. Most patients who present in the clinic are diagnosed with primary melanoma, yet large-scale sequencing efforts have focused primarily on metastatic disease. In this study we sequence-profiled 524 American Joint Committee on Cancer Stage I-III primary tumours. Our analysis of these data reveals recurrent driver mutations, mutually exclusive genetic interactions, where two genes were never or rarely co-mutated, and an absence of co-occurring genetic events. Further, we intersected copy number calls from our primary melanoma data with whole-genome CRISPR screening data to identify the transcription factor interferon regulatory factor 4 (IRF4) as a melanoma-associated dependency. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Melanoma , Humanos , Mutação , Melanoma/genética , Genoma , Genômica , Reino Unido
7.
Cell Rep Methods ; 2(8): 100269, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046619

RESUMO

B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.


Assuntos
Imunidade Adaptativa , Doenças Autoimunes , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores Imunológicos
10.
NAR Genom Bioinform ; 4(1): lqac002, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156023

RESUMO

Gene regulatory network inference allows for the modeling of genome-scale regulatory processes that are altered during development, in disease, and in response to perturbations. Our group has developed a collection of tools to model various regulatory processes, including transcriptional (PANDA, SPIDER) and post-transcriptional (PUMA) gene regulation, as well as gene regulation in individual samples (LIONESS). These methods work by postulating a network structure and then optimizing that structure to be consistent with multiple lines of biological evidence through repeated operations on data matrices. Although our methods are widely used, the corresponding computational complexity, and the associated costs and run times, do limit some applications. To improve the cost/time performance of these algorithms, we developed gpuZoo which implements GPU-accelerated calculations, dramatically improving the performance of these algorithms. The runtime of the gpuZoo implementation in MATLAB and Python is up to 61 times faster and 28 times less expensive than multi-core CPU implementation of the same methods. gpuZoo is available in MATLAB through the netZooM package https://github.com/netZoo/netZooM and in Python through the netZooPy package https://github.com/netZoo/netZooPy.

11.
Nucleic Acids Res ; 50(D1): D610-D621, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34508353

RESUMO

Gene regulation plays a fundamental role in shaping tissue identity, function, and response to perturbation. Regulatory processes are controlled by complex networks of interacting elements, including transcription factors, miRNAs and their target genes. The structure of these networks helps to determine phenotypes and can ultimately influence the development of disease or response to therapy. We developed GRAND (https://grand.networkmedicine.org) as a database for computationally-inferred, context-specific gene regulatory network models that can be compared between biological states, or used to predict which drugs produce changes in regulatory network structure. The database includes 12 468 genome-scale networks covering 36 human tissues, 28 cancers, 1378 unperturbed cell lines, as well as 173 013 TF and gene targeting scores for 2858 small molecule-induced cell line perturbation paired with phenotypic information. GRAND allows the networks to be queried using phenotypic information and visualized using a variety of interactive tools. In addition, it includes a web application that matches disease states to potentially therapeutic small molecule drugs using regulatory network properties.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Redes Reguladoras de Genes/genética , Software , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , MicroRNAs/classificação , MicroRNAs/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
12.
Bioinformatics ; 38(2): 580-582, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34320637

RESUMO

MOTIVATION: Characterizing cells with rare molecular phenotypes is one of the promises of high throughput single-cell RNA sequencing (scRNA-seq) techniques. However, collecting enough cells with the desired molecular phenotype in a single experiment is challenging, requiring several samples preprocessing steps to filter and collect the desired cells experimentally before sequencing. Data integration of multiple public single-cell experiments stands as a solution for this problem, allowing the collection of enough cells exhibiting the desired molecular signatures. By increasing the sample size of the desired cell type, this approach enables a robust cell type transcriptome characterization. RESULTS: Here, we introduce rPanglaoDB, an R package to download and merge the uniformly processed and annotated scRNA-seq data provided by the PanglaoDB database. To show the potential of rPanglaoDB for collecting rare cell types by integrating multiple public datasets, we present a biological application collecting and characterizing a set of 157 fibrocytes. Fibrocytes are a rare monocyte-derived cell type, that exhibits both the inflammatory features of macrophages and the tissue remodeling properties of fibroblasts. This constitutes the first fibrocytes' unbiased transcriptome profile report. We compared the transcriptomic profile of the fibrocytes against the fibroblasts collected from the same tissue samples and confirm their associated relationship with healing processes in tissue damage and infection through the activation of the prostaglandin biosynthesis and regulation pathway. AVAILABILITY AND IMPLEMENTATION: rPanglaoDB is implemented as an R package available through the CRAN repositories https://CRAN.R-project.org/package=rPanglaoDB.


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
13.
Cancer Res ; 81(21): 5401-5412, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34493595

RESUMO

Glioblastoma is an aggressive cancer of the brain and spine. While analysis of glioblastoma 'omics data has somewhat improved our understanding of the disease, it has not led to direct improvement in patient survival. Cancer survival is often characterized by differences in gene expression, but the mechanisms that drive these differences are generally unknown. We therefore set out to model the regulatory mechanisms associated with glioblastoma survival. We inferred individual patient gene regulatory networks using data from two different expression platforms from The Cancer Genome Atlas. We performed comparative network analysis between patients with long- and short-term survival. Seven pathways were identified as associated with survival, all of them involved in immune signaling; differential regulation of PD1 signaling was validated to correspond with outcome in an independent dataset from the German Glioma Network. In this pathway, transcriptional repression of genes for which treatment options are available was lost in short-term survivors; this was independent of mutational burden and only weakly associated with T-cell infiltration. Collectively, these results provide a new way to stratify patients with glioblastoma that uses network features as biomarkers to predict survival. They also identify new potential therapeutic interventions, underscoring the value of analyzing gene regulatory networks in individual patients with cancer. SIGNIFICANCE: Genome-wide network modeling of individual glioblastomas identifies dysregulation of PD1 signaling in patients with poor prognosis, indicating this approach can be used to understand how gene regulation influences cancer progression.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/patologia , Linfócitos do Interstício Tumoral/imunologia , Mutação , Receptor de Morte Celular Programada 1/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptor de Morte Celular Programada 1/genética , Taxa de Sobrevida
14.
Biomedicines ; 9(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440251

RESUMO

Sarcomas comprise a collection of highly heterogeneous malignancies that can be grossly grouped in the categories of sarcomas with simple or complex genomes. Since the outcome for most sarcoma patients has barely improved in the last decades, there is an urgent need for improved therapies. Immunotherapy, and especially T cell checkpoint blockade, has recently been a game-changer in cancer therapy as it produced significant and durable treatment responses in several cancer types. Currently, only a small fraction of sarcoma patients benefit from immunotherapy, supposedly due to a general lack of somatically mutated antigens (neoantigens) and spontaneous T cell immunity in most cancers. However, genomic events resulting from chromosomal instability are frequent in sarcomas with complex genomes and could drive immunity in those tumors. Improving our understanding of the mechanisms that shape the immune landscape of sarcomas will be crucial to overcoming the current challenges of sarcoma immunotherapy. This review focuses on what is currently known about the tumor microenvironment in sarcomas and how this relates to their genomic features. Moreover, we discuss novel therapeutic strategies that leverage the tumor microenvironment to increase the clinical efficacy of immunotherapy, and which could provide new avenues for the treatment of sarcomas.

15.
Front Genet ; 12: 649440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968132

RESUMO

Networks are useful tools to represent and analyze interactions on a large, or genome-wide scale and have therefore been widely used in biology. Many biological networks-such as those that represent regulatory interactions, drug-gene, or gene-disease associations-are of a bipartite nature, meaning they consist of two different types of nodes, with connections only forming between the different node sets. Analysis of such networks requires methodologies that are specifically designed to handle their bipartite nature. Community structure detection is a method used to identify clusters of nodes in a network. This approach is especially helpful in large-scale biological network analysis, as it can find structure in networks that often resemble a "hairball" of interactions in visualizations. Often, the communities identified in biological networks are enriched for specific biological processes and thus allow one to assign drugs, regulatory molecules, or diseases to such processes. In addition, comparison of community structures between different biological conditions can help to identify how network rewiring may lead to tissue development or disease, for example. In this mini review, we give a theoretical basis of different methods that can be applied to detect communities in bipartite biological networks. We introduce and discuss different scores that can be used to assess the quality of these community structures. We then apply a wide range of methods to a drug-gene interaction network to highlight the strengths and weaknesses of these methods in their application to large-scale, bipartite biological networks.

16.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37396030

RESUMO

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

17.
Bioinformatics ; 36(18): 4765-4773, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32860050

RESUMO

MOTIVATION: Conventional methods to analyze genomic data do not make use of the interplay between multiple factors, such as between microRNAs (miRNAs) and the messenger RNA (mRNA) transcripts they regulate, and thereby often fail to identify the cellular processes that are unique to specific tissues. We developed PUMA (PANDA Using MicroRNA Associations), a computational tool that uses message passing to integrate a prior network of miRNA target predictions with target gene co-expression information to model genome-wide gene regulation by miRNAs. We applied PUMA to 38 tissues from the Genotype-Tissue Expression project, integrating RNA-Seq data with two different miRNA target predictions priors, built on predictions from TargetScan and miRanda, respectively. We found that while target predictions obtained from these two different resources are considerably different, PUMA captures similar tissue-specific miRNA-target regulatory interactions in the different network models. Furthermore, the tissue-specific functions of miRNAs we identified based on regulatory profiles (available at: https://kuijjer.shinyapps.io/puma_gtex/) are highly similar between networks modeled on the two target prediction resources. This indicates that PUMA consistently captures important tissue-specific miRNA regulatory processes. In addition, using PUMA we identified miRNAs regulating important tissue-specific processes that, when mutated, may result in disease development in the same tissue. AVAILABILITY AND IMPLEMENTATION: PUMA is available in C++, MATLAB and Python on GitHub (https://github.com/kuijjerlab and https://netzoo.github.io/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , Proteínas Reguladoras de Apoptose/genética , Biologia Computacional , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro , RNA-Seq
18.
Cancer Res ; 80(15): 3072-3073, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32753487

RESUMO

One of the biggest challenges in cancer is predicting its initiation and course of progression. In this issue of Cancer Research, Rockne and colleagues use state transition theory to predict how peripheral mononuclear blood cells in mice transition from a healthy state to acute myeloid leukemia. They found that critical transcriptomic perturbations could predict initiation and progression of the disease. This is an important step toward accurately predicting cancer evolution, which may eventually facilitate early diagnosis of cancer and disease recurrence, and which could potentially inform on timing of therapeutic interventions.See related article by Rockne et al., 3157.


Assuntos
Leucemia Mieloide Aguda , Animais , Progressão da Doença , Expressão Gênica , Camundongos , Recidiva
19.
Cell Rep ; 31(12): 107795, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579922

RESUMO

Sex differences manifest in many diseases and may drive sex-specific therapeutic responses. To understand the molecular basis of sex differences, we evaluated sex-biased gene regulation by constructing sample-specific gene regulatory networks in 29 human healthy tissues using 8,279 whole-genome expression profiles from the Genotype-Tissue Expression (GTEx) project. We find sex-biased regulatory network structures in each tissue. Even though most transcription factors (TFs) are not differentially expressed between males and females, many have sex-biased regulatory targeting patterns. In each tissue, genes that are differentially targeted by TFs between the sexes are enriched for tissue-related functions and diseases. In brain tissue, for example, genes associated with Parkinson's disease and Alzheimer's disease are targeted by different sets of TFs in each sex. Our systems-based analysis identifies a repertoire of TFs that play important roles in sex-specific architecture of gene regulatory networks, and it underlines sex-specific regulatory processes in both health and disease.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Especificidade de Órgãos/genética , Caracteres Sexuais , Cromossomos Humanos X/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
BMC Cancer ; 19(1): 1003, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653243

RESUMO

BACKGROUND: In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those individuals in the population. LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) is a method that can be used together with a network inference algorithm to extract networks for individual samples in a population. The method's key characteristic is that, by modeling networks for individual samples in a data set, it can capture network heterogeneity in a population. LIONESS was originally made available as a function within the PANDA (Passing Attributes between Networks for Data Assimilation) regulatory network reconstruction framework. However, the LIONESS algorithm is generalizable and can be used to model single sample networks based on a wide range of network inference algorithms. RESULTS: In this software article, we describe lionessR, an R implementation of LIONESS that can be applied to any network inference method in R that outputs a complete, weighted adjacency matrix. As an example, we provide a vignette of an application of lionessR to model single sample networks based on correlated gene expression in a bone cancer dataset. We show how the tool can be used to identify differential patterns of correlation between two groups of patients. CONCLUSIONS: We developed lionessR, an open source R package to model single sample networks. We show how lionessR can be used to inform us on potential precision medicine applications in cancer. The lionessR package is a user-friendly tool to perform such analyses. The package, which includes a vignette describing the application, is freely available at: https://github.com/kuijjerlab/lionessR and at: http://bioconductor.org/packages/lionessR .


Assuntos
Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Medicina de Precisão/métodos , Software , Biópsia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Redes Reguladoras de Genes , Humanos , Neoplasias/terapia , Osteossarcoma/genética , Osteossarcoma/patologia , Análise de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA