Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Innate Immun ; : 1-18, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473432

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been classified as a high priority pathogen by the World Health Organization underlining the high demand for new therapeutics to treat infections. Human group IIA-secreted phospholipase A2 (hGIIA) is among the most potent bactericidal proteins against Gram-positive bacteria, including S. aureus. To determine hGIIA-resistance mechanisms of MRSA, we screened the Nebraska Transposon Mutant Library using a sublethal concentration of recombinant hGIIA. We identified and confirmed the role of lspA, encoding the lipoprotein signal peptidase LspA, as a new hGIIA resistance gene in both in vitro assays and an infection model in hGIIA-transgenic mice. Increased susceptibility of the lspA mutant was associated with enhanced activity of hGIIA on the cell membrane. Moreover, lspA deletion increased susceptibility to daptomycin, a last-resort antibiotic to treat MRSA infections. MRSA wild type could be sensitized to hGIIA and daptomycin killing through exposure to LspA-specific inhibitors globomycin and myxovirescin A1. Analysis of >26,000 S. aureus genomes showed that LspA is highly sequence-conserved, suggesting universal application of LspA inhibition. The role of LspA in hGIIA resistance was not restricted to MRSA since Streptococcus mutans and Enterococcus faecalis were also more hGIIA-susceptible after lspA deletion or LspA inhibition, respectively. Overall, our data suggest that pharmacological interference with LspA may disarm Gram-positive pathogens, including MRSA, to enhance clearance by innate host defense molecules and clinically applied antibiotics.

2.
J Biol Chem ; 294(45): 17031-17042, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31558608

RESUMO

Pathogen activation of innate immune pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) stimulates cellular signaling pathways. This often leads to outcomes that contribute to pathogen clearance. Alternatively, activation of specific PRR pathways can aid pathogen survival. The human pathogen Staphylococcus aureus is a case in point, employing strategies to escape innate immune recognition and killing by the host. As for other bacteria, PRR-stimulated type I interferon (IFN-I) induction has been proposed as one such immune escape pathway that may favor S. aureus Cell wall components of S. aureus elicit TLR2-dependent cellular responses, but the exact signaling pathways activated by S. aureus-TLR2 engagement and the consequences of their activation for the host and bacterium are not fully known. We previously showed that TLR2 activates both a cytoplasmic and an endosome-dependent signaling pathway, the latter leading to IFN-I production. Here, we demonstrate that S. aureus infection of human monocytes activates a TLR2-dependent endosomal signaling pathway, leading to IFN-I induction. We mapped the signaling components of this pathway and identified roles in IFN-I stimulation for the Toll-interleukin-1 receptor (TIR) adaptor Myd88 adaptor-like (Mal), TNF receptor-associated factor 6 (TRAF6), and IκB kinase (IKK)-related kinases, but not for TRIF-related adaptor molecule (TRAM) and TRAF3. Importantly, monocyte TLR2-dependent endosomal signaling enabled immune escape for S. aureus, because this pathway, but not IFN-I per se, contributed to intracellular bacterial survival. These results reveal a TLR2-dependent mechanism in human monocytes whereby S. aureus manipulates innate immune signaling for its survival in cells.


Assuntos
Endossomos/metabolismo , Interferon Tipo I/metabolismo , Viabilidade Microbiana , Monócitos/microbiologia , Transdução de Sinais , Staphylococcus aureus/fisiologia , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Monócitos/citologia , Fator 6 Associado a Receptor de TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA