Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Biol Chem ; : 107899, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39424145

RESUMO

Agonist-induced rises in cytosolic Ca2+ control most platelet responses in thrombosis and hemostasis. In human platelets we earlier demonstrated that the ORAI1-STIM1 pathway is a major component of extracellular Ca2+ entry, in particular when induced via the ITAM-linked collagen receptor, glycoprotein VI (GPVI). In the present paper, using functionally defective platelets from patients with a loss-of-function mutation in ORAI1 or STIM1, we show that Ca2+ entry induced by the endoplasmic reticulum ATPase inhibitor, thapsigargin, fully relies on this pathway. We demonstrate that both the GPVI-induced and thapsigargin-induced Ca2+ entry is strongly suppressed by protein kinase C (PKC) activation, while leaving intracellular Ca2+ mobilization unchanged. Comparing effects of a PKC inhibitory panel pointed to redundant roles of beta and theta PKC isoforms in Ca2+-entry suppression. In contrast, tyrosine kinases positively regulated GPVI-induced Ca2+ entry and mobilization. Label-free and stable isotope phosphoproteome analysis of GPVI-stimulated platelets suggested a regulatory role of bridging integrator-2 (BIN2), known as important mediator of the ORAI1-STIM1 pathway in mouse platelets. Identified were 25-45 regulated phospho- sites in BIN2 and 16-18 in STIM1. Five of these were characterized as direct substrates of the expressed PKC isoforms alpha, beta delta and theta. Functional platelet testing indicated that the downregulation of Ca2+ entry by PKC resulted in suppressed phosphatidylserine exposure and plasmatic thrombin generation. Conclusively, our results indicate that in platelets multiple PKC isoforms constrain the store-regulated Ca2+ entry via ORAI1-BIN2-STIM1, and hence downregulate platelet-dependent coagulation.

2.
Thromb Haemost ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653482

RESUMO

BACKGROUND: Platelet glycoprotein VI (GPVI) stimulation activates the tyrosine kinases Syk and Btk, and the effector proteins phospholipase Cγ 2 (PLCγ2) and protein kinase C (PKC). Here, the activation sequence, crosstalk, and downstream effects of this Syk-Btk-PKC signalosome in human platelets were analyzed. METHODS AND RESULTS: Using immunoblotting, we quantified 14 regulated phospho-sites in platelets stimulated by convulxin with and without inhibition of Syk, Btk, or PKC. Convulxin induced fast, reversible tyrosine phosphorylation (pY) of Syk, Btk, LAT, and PLCγ2, followed by reversible serine/threonine phosphorylation (pS/T) of Syk, Btk, and downstream kinases MEK1/2, Erk1/2, p38, and Akt. Syk inhibition by PRT-060318 abolished all phosphorylations, except Syk pY352. Btk inhibition by acalabrutinib strongly decreased Btk pY223/pS180, Syk pS297, PLCγ2 pY759/Y1217, MEK1/2 pS217/221, Erk1/2 pT202/Y204, p38 pT180/Y182, and Akt pT308/S473. PKC inhibition by GF109203X abolished most pS/T phosphorylations except p38 pT180/Y182 and Akt pT308, but enhanced most Y-phosphorylations. Acalabrutinib, but not GF109203X, suppressed convulxin-induced intracellular Ca2+ mobilization, whereas all three protein kinase inhibitors abolished degranulation and αIIbß3 integrin activation assessed by flow cytometry. Inhibition of autocrine ADP effects by AR-C669931 partly diminished convulxin-triggered degranulation. CONCLUSION: Kinetic analysis of GPVI-initiated multisite protein phosphorylation in human platelets demonstrates multiple phases and interactions of tyrosine and serine/threonine kinases with activation-altering feedforward and feedback loops partly involving PKC. The protein kinase inhibitor effects on multisite protein phosphorylation and functional readouts reveal that the signaling network of Syk, Btk, and PKC controls platelet granule exocytosis and αIIbß3 integrin activation.

3.
Biomater Sci ; 12(8): 2149-2164, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38487997

RESUMO

The sole effective treatment for most patients with heart valve disease is valve replacement by implantation of mechanical or biological prostheses. However, mechanical valves represent high risk of thromboembolism, and biological prostheses are prone to early degeneration. In this work, we aim to determine the potential of novel environmentally-friendly non-isocyanate polyurethanes (NIPUs) for manufacturing synthetic prosthetic heart valves. Polyhydroxyurethane (PHU) NIPUs are synthesized via an isocyanate-free route, tested in vitro, and used to produce aortic valves. PHU elastomers reinforced with a polyester mesh show mechanical properties similar to native valve leaflets. These NIPUs do not cause hemolysis. Interestingly, both platelet adhesion and contact activation-induced coagulation are strongly reduced on NIPU surfaces, indicating low thrombogenicity. Fibroblasts and endothelial cells maintain normal growth and shape after indirect contact with NIPUs. Fluid-structure interaction (FSI) allows modeling of the ideal valve design, with minimal shear stress on the leaflets. Injection-molded valves are tested in a pulse duplicator and show ISO-compliant hydrodynamic performance, comparable to clinically-used bioprostheses. Poly(tetrahydrofuran) (PTHF)-NIPU patches do not show any evidence of calcification over a period of 8 weeks. NIPUs are promising sustainable biomaterials for the manufacturing of improved prosthetic valves with low thrombogenicity.


Assuntos
Próteses Valvulares Cardíacas , Poliuretanos , Humanos , Poliuretanos/química , Isocianatos , Células Endoteliais , Valva Aórtica/cirurgia
4.
Sci Rep ; 14(1): 6229, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486006

RESUMO

Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.


Assuntos
Cálcio , Fenotiazinas , Inibidores da Agregação Plaquetária , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Cálcio/metabolismo , Trombina/metabolismo , Sinalização do Cálcio , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Plaquetas/metabolismo , Ativação Plaquetária , Cálcio da Dieta/farmacologia , Agregação Plaquetária
5.
FASEB J ; 38(4): e23468, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334433

RESUMO

The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombina , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Proteínas Quinases/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Ativação Plaquetária/fisiologia , Plaquetas/metabolismo , Endotélio/metabolismo , Prostaglandinas I
6.
Cell Mol Life Sci ; 81(1): 44, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236412

RESUMO

The platelet receptors, glycoprotein VI (GPVI) and integrin α2ß1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2ß1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2ß1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2ß1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2ß1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2ß1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2ß1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2ß1 engagement.


Assuntos
Integrina alfa2beta1 , Trombose , Humanos , Integrina alfa2beta1/genética , Plaquetas , Glicoproteínas , Colágeno , Trombose/genética
7.
JACC Basic Transl Sci ; 8(11): 1439-1453, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38093743

RESUMO

In addition to its potent antiplatelet activity, ticagrelor possesses antibacterial properties against gram-positive bacteria. We wondered whether the typical clinical dosage of ticagrelor could prevent the development of infective endocarditis caused by highly virulent Staphylococcus aureus. Ticagrelor prevented vegetation formation in a mouse model of inflammation-induced endocarditis. The dosage achieved in patients under ticagrelor therapy altered bacterial toxin production and adherence on activated endothelial cells, thereby mitigating bacterial virulence. Besides the previously described bactericidal activity at high doses, ticagrelor at typical clinical doses possesses antivirulence activity against S aureus. Ticagrelor antiplatelet activity further interferes with the interplay between platelets and bacteria.

8.
Arterioscler Thromb Vasc Biol ; 43(9): 1700-1712, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409530

RESUMO

BACKGROUND: Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS: Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbß3. RESULTS: We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS: Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.


Assuntos
Artérias , Plaquetas , Quimiocinas , Ativação de Neutrófilo , Neutrófilos , Trombose , Plaquetas/imunologia , Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Quimiocinas/metabolismo , Trombose/imunologia , Ligante de CD40 , Neutrófilos/imunologia , Neutrófilos/metabolismo , Adesão Celular , Humanos
9.
Sci Rep ; 13(1): 9359, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291189

RESUMO

Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Algoritmos , RNA/metabolismo , Plaquetas/metabolismo , Testes Hematológicos
10.
Thromb Res ; 228: 105-116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302266

RESUMO

INTRODUCTION: The protein tyrosine phosphatase SHP2 (PTPN11) is a negative regulator of glycoprotein VI (GPVI)-induced platelet signal under certain conditions. Clinical trials with derivatives of the allosteric drug SHP099, inhibiting SHP2, are ongoing as potential therapy for solid cancers. Gain-of-function mutations of the PTPN11 gene are observed in part of the patients with the Noonan syndrome, associated with a mild bleeding disorder. Assessment of the effects of SHP2 inhibition in platelets from controls and Noonan syndrome patients. MATERIALS AND METHODS: Washed human platelets were incubated with SHP099 and stimulated with collagen-related peptide (CRP) for stirred aggregation and flow cytometric measurements. Whole-blood microfluidics assays using a dosed collagen and tissue factor coating were performed to assess shear-dependent thrombus and fibrin formation. Effects on clot formation were evaluated by thromboelastometry. RESULTS: Pharmacological inhibition of SHP2 did not alter GPVI-dependent platelet aggregation under stirring, but it enhanced integrin αIIbß3 activation in response to CRP. Using whole-blood microfluidics, SHP099 increased the thrombus buildup on collagen surfaces. In the presence of tissue factor and coagulation, SHP099 increased thrombus size and reduced time to fibrin formation. Blood from PTPN11-mutated Noonan syndrome patients, with low platelet responsiveness, after ex vivo treatment with SHP099 showed a normalized platelet function. In thromboelastometry, SHP2 inhibition tended to increase tissue factor-induced blood clotting profiles with tranexamic acid, preventing fibrinolysis. CONCLUSION: Pharmacological inhibition of SHP2 by the allosteric drug SHP099 enhances GPVI-induced platelet activation under shear conditions with a potential to improve platelet functions of Noonan syndrome patients.


Assuntos
Síndrome de Noonan , Trombose , Humanos , Plaquetas/metabolismo , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Tromboplastina/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Colágeno/metabolismo , Fibrina/metabolismo , Glicoproteínas da Membrana de Plaquetas , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
11.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175486

RESUMO

Bruton's tyrosine kinase (Btk) and spleen tyrosine kinase (Syk) are major signaling proteins in human platelets that are implicated in atherothrombosis and thrombo-inflammation, but the mechanisms controlling their activities are not well understood. Previously, we showed that Syk becomes phosphorylated at S297 in glycoprotein VI (GPVI)-stimulated human platelets, which limits Syk activation. Here, we tested the hypothesis that protein kinases C (PKC) and A (PKA) and protein phosphatase 2A (PP2A) jointly regulate GPVI-induced Btk activation in platelets. The GPVI agonist convulxin caused rapid, transient Btk phosphorylation at S180 (pS180↑), Y223 and Y551, while direct PKC activation strongly increased Btk pS180 and pY551. This increase in Btk pY551 was also Src family kinase (SFK)-dependent, but surprisingly Syk-independent, pointing to an alternative mechanism of Btk phosphorylation and activation. PKC inhibition abolished convulxin-stimulated Btk pS180 and Syk pS297, but markedly increased the tyrosine phosphorylation of Syk, Btk and effector phospholipase Cγ2 (PLCγ2). PKA activation increased convulxin-induced Btk activation at Y551 but strongly suppressed Btk pS180 and Syk pS297. PP2A inhibition by okadaic acid only increased Syk pS297. Both platelet aggregation and PLCγ2 phosphorylation with convulxin stimulation were Btk-dependent, as shown by the selective Btk inhibitor acalabrutinib. Together, these results revealed in GPVI-stimulated platelets a transient Syk, Btk and PLCγ2 phosphorylation at multiple sites, which are differentially regulated by PKC, PKA or PP2A. Our work thereby demonstrated the GPVI-Syk-Btk signalosome as a tightly controlled protein kinase network, in agreement with its role in atherothrombosis.


Assuntos
Proteína Quinase C , Proteína Fosfatase 2 , Humanos , Tirosina Quinase da Agamaglobulinemia/metabolismo , Plaquetas/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Proteína Fosfatase 2/metabolismo , Quinase Syk/metabolismo
13.
Cancer Cell ; 40(9): 999-1009.e6, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36055228

RESUMO

Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I-IV cancer patients and in half of 352 stage I-III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening.


Assuntos
Neoplasias , RNA , Biomarcadores Tumorais/genética , Plaquetas , Detecção Precoce de Câncer/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , RNA/genética
14.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955743

RESUMO

Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6tg/tg). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.


Assuntos
Adesividade Plaquetária , Glicoproteínas da Membrana de Plaquetas , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Cães , Epitopos/metabolismo , Cobaias , Humanos , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Coelhos , Ratos
15.
BMC Cancer ; 22(1): 653, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698081

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs), such as sunitinib, are used for cancer treatment, but may also affect platelet count and function with possible hemostatic consequences. Here, we investigated whether patient treatment with the TKI sunitinib affected quantitative and qualitative platelet traits as a function of the sunitinib level and the occurrence of bleeding. METHODS: Blood was collected from 20 metastatic renal cell carcinoma (mRCC) patients before treatment, and at 2 weeks, 4 weeks and 3 months after sunitinib administration. We measured blood cell counts, platelet aggregation, and concentrations of sunitinib as well as its N-desethyl metabolite in plasma, serum and isolated platelets. Progression of disease (PD) and bleeding were monitored after 3 months. RESULTS: In sunitinib-treated mRCC patients, concentrations of (N-desethyl-)sunitinib in plasma and serum were highly correlated. In the patients' platelets the active metabolite levels were relatively increased as compared to sunitinib. On average, a sustained reduction in platelet count was observed on-treatment, which was significantly related to the inhibitor levels in plasma/serum. Principal component and correlational analysis showed that the (N-desethyl-)sunitinib levels in plasma/serum were linked to a reduction in both platelet count and collagen-induced platelet aggregation. The reduced aggregation associated in part with reported bleeding, but did not correlate to PD. CONCLUSION: The sunitinib-induced reduction in quantitative and qualitative platelet traits may reflect the effective sunitinib levels in the patient. These novel results may serve as a proof-of-principle for other TKI-related drugs, where both platelet count and functions are affected, which could be used for therapeutic drug monitoring.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Antineoplásicos/efeitos adversos , Plaquetas/patologia , Carcinoma de Células Renais/patologia , Humanos , Indóis/efeitos adversos , Neoplasias Renais/patologia , Pirróis/efeitos adversos , Sunitinibe/uso terapêutico
16.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628635

RESUMO

In the present decade, we are seeing a rapid increase in available genetics and multiomics information on blood and vascular components of the human and mammalian circulation, involved in haemostasis, athero- and venous thrombosis, and thrombo-inflammation [...].


Assuntos
Trombose , Trombose Venosa , Animais , Hemostasia/genética , Humanos , Inflamação/genética , Mamíferos , Trombose/genética
17.
Biomedicines ; 10(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35625720

RESUMO

Platelets are key regulators of haemostasis, making platelet dysfunction a major driver of thrombosis. Numerous processes that determine platelet function are influenced by microRNAs (miRs). MiR-26b is one of the highest-expressed miRs in healthy platelets, and its expression in platelets is changed in a diseased state. However, the exact effect of this miR on platelet function has not been studied yet. In this study, we made use of a whole-body knockout of miR-26b in ApoE-deficient mice in order to determine its impact on platelet function, thrombus formation and platelet signalling both ex vivo and in vivo. We show that a whole-body deficiency of miR-26b exacerbated platelet adhesion and aggregation ex vivo. Additionally, in vivo, platelets adhered faster, and larger thrombi were formed in mice lacking miR-26b. Moreover, isolated platelets from miR-26b-deficient mice showed a hyperactivated Src and EGFR signalling. Taken together, we show here for the first time that miR-26b attenuates platelet adhesion and aggregation, possibly through Src and EGFR signalling.

18.
Res Pract Thromb Haemost ; 6(2): e12678, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35284776

RESUMO

Background: Low plasma levels of protein C or protein S are associated with venous thromboembolism rather than myocardial infarction. The high coagulant activity in patients with thrombophilia with a (familial) defect in protein C or S is explained by defective protein C activation, involving thrombomodulin and protein S. This causes increased plasmatic thrombin generation. Objective: Assess the role of platelets in the thrombus- and fibrin-forming potential in patients with familial protein C or protein S deficiency under high-shear flow conditions. Patients/Methods: Whole blood from 23 patients and 15 control subjects was perfused over six glycoprotein VI-dependent microspot surfaces. By real-time multicolor microscopic imaging, kinetics of platelet thrombus and fibrin formation were characterized in 49 parameters. Results and Conclusion: Whole-blood flow perfusion over collagen, collagen-like peptide, and fibrin surfaces with low or high GPVI dependency indicated an unexpected impairment of platelet activation, thrombus phenotype, and fibrin formation but unchanged platelet adhesion, observed in patients with protein C deficiency and to a lesser extent protein S deficiency, when compared to controls. The defect extended from diminished phosphatidylserine exposure and thrombus contraction to delayed and suppressed fibrin formation. The mechanism was thrombomodulin independent, and may involve negative platelet priming by plasma components.

19.
iScience ; 25(1): 103718, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072010

RESUMO

Antiplatelet drugs targeting G-protein-coupled receptors (GPCRs), used for the secondary prevention of arterial thrombosis, coincide with an increased bleeding risk. Targeting ITAM-linked receptors, such as the collagen receptor glycoprotein VI (GPVI), is expected to provide a better antithrombotic-hemostatic profile. Here, we developed and characterized an ultra-high-throughput (UHT) method based on intracellular [Ca2+]i increases to differentiate GPVI and GPCR effects on platelets. In 96-, 384-, or 1,536-well formats, Calcium-6-loaded human platelets displayed a slow-prolonged or fast-transient [Ca2+]i increase when stimulated with the GPVI agonist collagen-related peptide or with thrombin and other GPCR agonists, respectively. Semi-automated curve fitting revealed five parameters describing the Ca2+ responses. Verification of the UHT assay was done with a robustness compound library and clinically relevant platelet inhibitors. Taken together, these results present proof of principle of distinct receptor-type-dependent Ca2+ signaling curves in platelets, which allow identification of new inhibitors in a UHT way.

20.
Thromb Haemost ; 122(5): 726-738, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34689320

RESUMO

Platelets from healthy donors display heterogeneity in responsiveness to agonists. The response thresholds of platelets are controlled by multiple bioactive molecules, acting as negatively or positively priming substances. Higher circulating levels of priming substances adenosine and succinate, as well as the occurrence of hypercoagulability, have been described for patients with ischaemic heart disease. Here, we present an improved methodology of flow cytometric analyses of platelet activation and the characterisation of platelet populations following activation and priming by automated clustering analysis.Platelets were treated with adenosine, succinate, or coagulated plasma before stimulation with CRP-XL, 2-MeSADP, or TRAP6 and labelled for activated integrin αIIbß3 (PAC1), CD62P, TLT1, CD63, and GPIX. The Super-Enhanced Dmax subtraction algorithm and 2% marker (quadrant) setting were applied to identify populations, which were further defined by state-of-the-art clustering techniques (tSNE, FlowSOM).Following activation, five platelet populations were identified: resting, aggregating (PAC1 + ), secreting (α- and dense-granules; CD62P + , TLT1 + , CD63 + ), aggregating plus α-granule secreting (PAC1 + , CD62P + , TLT1 + ), and fully active platelet populations. The type of agonist determined the distribution of platelet populations. Adenosine in a dose-dependent way suppressed the fraction of fully activated platelets (TRAP6 > 2-MeSADP > CRP-XL), whereas succinate and coagulated plasma increased this fraction (CRP-XL > TRAP6 > 2-MeSADP). Interestingly, a subset of platelets showed a constant response (aggregating, secreting, or aggregating plus α-granule secreting), which was hardly affected by the stimulus strength or priming substances.


Assuntos
Plaquetas , Ativação Plaquetária , Adenosina/farmacologia , Citometria de Fluxo/métodos , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Succinatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA