Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 152: 106424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290392

RESUMO

Magnesium/Ceria nanocomposites (Mg/xCeO2 NCs (x = 0.5 %, 1 % and 1.5 %)) prepared by using powder metallurgy and microwave sintering method are assessed for their corrosion rate for a period of 28 days. As per the immersion tests results, the addition of ceria nanoparticles to pure Mg, brought about a noteworthy improvement to corrosion resistance. A corrosion rate of approximately 0.84 mm/year for Mg/0.5CeO2 and 0.99 mm/year for Mg/1.0CeO2 nanocomposites were observed. Another aspect of the study involves employing the simulation method i.e. finite element analysis (FEA) to compare the stress distribution in magnesium-ceria nanocomposite based screws and circular bars especially for Mg/0.5CeO2 and Mg/1.0CeO2. Further, the simulation also gives a perception of the impact of masticatory forces, the biting force and shear stress exerted on the Mg/0.5CeO2 and Mg/1.0CeO2 based screws. The simulations results show that the screws showed an acceptable level of stresses for a biting force up to 300 N. The circular bar as well kept its stresses at acceptable levels for the same load of 300N. The shear stress results indicated that a biting force up to 602 N can be safely absorbed by Mg/0.5CeO2 screw. The comprehensive approach allows for a better understanding of the corrosion behavior, stress distribution, and mechanical properties of the Mg/CeO2 nanocomposites, enabling the development of effective temporary implants for craniofacial trauma fixation that can withstand normal physiological forces during mastication. The study reported in this paper aims to target Mg/xCeO2 NCs for temporary implants for craniofacial trauma fixation.


Assuntos
Fraturas Ósseas , Reconstrução Mandibular , Nanocompostos , Humanos , Magnésio , Análise de Elementos Finitos , Imageamento Tridimensional/métodos
2.
Materials (Basel) ; 17(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276439

RESUMO

Magnesium alloys play an essential role in metallic lightweight construction for modern mobility applications due to their low density, excellent specific strength, and very good castability. For some years now, degradable implants have also been made from magnesium alloys, which, thanks to this special functionality, save patients a second surgery for explantation. New additive manufacturing processes, which are divided into powder-based and wire-based processes depending on the feedstock used, can be utilized for these applications. Therefore, magnesium alloys should also be used here, but this is hardly ever implemented, and few literature reports exist on this subject. This is attributable to the high affinity of magnesium to oxygen, which makes the use of powders difficult. Therefore, magnesium wires are likely to be used. In this paper, a magnesium-based nanocomposite wire is made from an AM60 (Mg-6Al-0.4Mn) (reinforced with 1 wt% AlN nanoparticles and containing calcium to reduce flammability), using a high-shear process and then extruded into wires. These wires are then used as feedstock to build up samples by wire-arc directed energy deposition, and their mechanical properties and microstructure are examined. Our results show that although the ductility is reduced by adding calcium and nanoparticles, the yield strength in the welding direction and perpendicular to it is increased to 131 MPa.

3.
J Mech Behav Biomed Mater ; 114: 104162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33144044

RESUMO

Magnesium-Zinc based nanocomposites containing cerium oxide nanoparticles were developed in the present work. A systematic study on their microstructure, mechanical properties, in vitro degradation behaviour, and cytotoxicity are presented. It was found that the developed nanocomposites exhibited excellent strength and toughness that are superior to the commercially available magnesium alloys. From corrosion perspective, nanocomposites exhibited reduced pH increase compared to pure Mg with Mg-0.5Zn/0.5CeO2 showing the least corrosion rate. Moreover, the developed nanocomposites exhibited no cytotoxicity to MC3T3-E1 pre-osteoblast cells. Based on the above findings, the feasibility of Mg-Zn/CeO2 nanocomposites for use as orthopaedic implants is systematically discussed. This study provides an insight into the development of new high-performance Mg alloy-rare earth oxide (REO)-based nanocomposites with superior mechanical properties and corrosion resistance while effectively avoiding the possible standing toxic effect of RE elements.


Assuntos
Nanocompostos , Ortopedia , Implantes Absorvíveis , Ligas , Materiais Biocompatíveis/toxicidade , Corrosão , Imersão , Magnésio , Teste de Materiais , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA