Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37656352

RESUMO

Trophoblast antigen 2 (Trop2) is a transmembrane glycoprotein upregulated in multiple solid tumours. Trop2-based passive immunotherapies are in clinical trials, while Trop2 targeting CAR-T cell-based therapies are also reported. Information about its T- and B-cell epitopes is needed for it to be pursued as an active immunotherapeutic target. This study focused on identification of immunodominant epitopes in the Trop2 extracellular domain (ECD) that can mount an efficient anti-Trop2 antibody response. In silico analysis using various B-cell epitope prediction tools was carried out to identify linear and conformational B-cell epitopes in the ECD of Trop2. Three linear peptide immunogens were shortlisted and synthesized. Along with linear peptides, truncated Trop2 ECD that possesses combination of linear and conformational epitopes was also selected. Recombinant protein immunogen was produced in 293-F suspension culture system and affinity purified. Antisera against different immunogens were characterized by ELISA and Western blotting. Two anti-peptide antisera detected recombinant and ectopically expressed Trop2 protein; however, they were unable to recognize the endogenous Trop2 protein expressed by cancer cells. Antibodies against truncated Trop2 ECD could bind to the endogenous Trop2 expressed on the surface of cancer cells. In addition to their high avidity, these polyclonal anti-sera against truncated Trop2 protein also mediated antibody-dependent cell-mediated cytotoxicity (ADCC). In summary, our comparative analysis demonstrated the utility of truncated Trop2 ECD as a promising candidate to be pursued as an active immunotherapeutic molecule against Trop2-positive cancer cells.

2.
Biotechnol Prog ; 39(1): e3304, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181372

RESUMO

Analytical and functional characterization of batches of biologics/biosimilar products are imperative towards qualifying them for pre-clinical and clinical investigations. Several orthogonal strategies are employed to characterize the functional attributes of these drugs. However, the use of conventional techniques for online monitoring of functional attributes is not feasible. Liquid chromatography is one of the crucial unit operations during the downstream processing of biopharmaceuticals. In this work, we have demonstrated the utility of FcγRIIIA affinity chromatography as an independent quantitative functional characterization tool. FcγRIIIA affinity chromatography aided in sequential elution of Rituximab glycoform mixtures, based on varying levels of galactosylation, and thereby the affinity for the receptor protein. The predominant glycans present in the three Rituximab glycoform mixture peaks were G0F, G1F, and G2F, respectively. Dissociation rate constants were derived from the chromatographic elution profiles by the peak profiling method, for the control and glucose stress conditions. The glucose stress conditions did not result in unfavorable binding kinetics of Rituximab and FcγRIIIA. The dissociation rate constants of the glycoform mixture 2, predominantly consisting of G1F, were similar to the dissociation rate constants obtained by surface plasmon resonance. Moreover, the glycosylation profiles obtained from chromatographic estimation can be corroborated with the ADCC activity. However, the ex vivo ADCC reporter assay indicated that there was an increase in the effector activity with increasing glucose stress. Thus, FcγRIIIA affinity chromatography permitted three independent assessments via a single analysis. Such approaches can be utilized as potential process analytical technology (PAT) tools in the biosimilar development process.


Assuntos
Medicamentos Biossimilares , Rituximab/química , Medicamentos Biossimilares/química , Receptores de IgG/química , Polissacarídeos/química , Ressonância de Plasmônio de Superfície , Cromatografia de Afinidade , Citotoxicidade Celular Dependente de Anticorpos
3.
Front Immunol ; 12: 619906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194420

RESUMO

The role of sMAdCAM, an important gut immune migratory marker, remains unexplored in COVID-19 pathogenesis considering recent studies positing the gut as a sanctuary site for SARS-CoV-2 persistence. Thus, assimilating profiles of systemic inflammatory mediators with sMAdCAM levels may provide insights into the progression of COVID-19 disease. Also, the role of these markers in governing virus specific immunity following infection remains largely unexplored. A cohort (n = 84) of SARS-C0V-2 infected individuals included a group of in-patients (n = 60) at various stages of disease progression together with convalescent individuals (n = 24) recruited between April and June 2020 from Mumbai, India. Follow-up of 35 in-patients at day 7 post diagnosis was carried out. Th1/Th2/Th17 cytokines along with soluble MAdCAM (sMAdCAM) levels in plasma were measured. Also, anti-viral humoral response as measured by rapid antibody test (IgG, IgM), Chemiluminescent Immunoassay (IgG), and antibodies binding to SARS-CoV-2 proteins were measured by Surface Plasmon Resonance (SPR) from plasma. IL-6 and sMAdCAM levels among in-patients inversely correlated with one another. When expressed as a novel integrated marker-sMIL index (sMAdCAM/IL-6 ratio)-these levels were incrementally and significantly higher in various disease states with convalescents exhibiting the highest values. Importantly, sMAdCAM levels as well as sMIL index (fold change) correlated with peak association response units of receptor binding domain and fold change in binding to spike respectively as measured by SPR. Our results highlight key systemic and gut homing parameters that need to be monitored and investigated further to optimally guide therapeutic and prophylactic interventions for COVID-19.


Assuntos
COVID-19/imunologia , Moléculas de Adesão Celular/sangue , Interleucina-6/sangue , Mucoproteínas/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , COVID-19/fisiopatologia , Estudos de Coortes , Citocinas/sangue , Progressão da Doença , Feminino , Humanos , Intestinos/imunologia , Masculino , Pessoa de Meia-Idade , Ressonância de Plasmônio de Superfície , Adulto Jovem , Tratamento Farmacológico da COVID-19
4.
J Pept Sci ; 22(6): 397-405, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27282136

RESUMO

Follicle stimulating hormone (FSH) is a glycoprotein hormone required for female and male gametogenesis in vertebrates. Common marmoset (Callithrix jacchus) is a New World primate monkey, used as animal model in biomedical research. Observations like, requirement of extremely high dose of human FSH in marmosets for superovulation compared to other primates and generation of antibodies in marmoset against human FSH after repeated superovulation cycles, point towards the possibility that FSH-FSH receptor (FSHR) interaction in marmosets might be different than in the humans. In this study we attempted to understand some of these structural differences using FSH peptides and anti-peptide antibody approach. Based on sequence alignment, in silico modeling and docking studies, L2 loop of FSH ß-subunit (L2ß) was found to be different between marmoset and human. Hence, peptides corresponding to region 32-50 of marmoset and human L2ß loop were synthesized, purified and characterized. The peptides displayed dissimilarity in terms of molecular mass, predicted isoelectric point, predicted charge and in the ability to inhibit hormone-receptor interaction. Polyclonal antibodies generated against both the peptides were found to exhibit specific binding for the corresponding peptide and parent FSH in ELISA and Western blotting respectively and exhibited negligible reactivity to cross-species peptide and FSH in ELISA. The anti-peptide antibody against marmoset FSH was also able to detect native FSH in marmoset plasma samples and pituitary sections. In summary, the L2ß loop of marmoset and human FSH has distinct receptor interaction ability and immunoreactivity indicating possibility of subtle conformational and biochemical differences between the two regions which may affect the FSH-FSHR interaction in these two primates. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Anticorpos/metabolismo , Callithrix/metabolismo , Hormônio Foliculoestimulante/química , Hormônio Foliculoestimulante/metabolismo , Peptídeos/síntese química , Animais , Feminino , Humanos , Masculino , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Receptores do FSH/metabolismo , Especificidade da Espécie
5.
J Pept Sci ; 22(6): 383-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27161017

RESUMO

Cysteine-rich secretory proteins (CRISPs) are mainly found in the mammalian male reproductive tract and reported to be involved at different stages of fertilization. CRISPs have been shown to interact with prostate secretory protein of 94 amino acids (PSP94) from diverse sources, and the binding of these evolutionarily conserved proteins across species is proposed to be of functional significance. Of the three mammalian CRISPs, PSP94-CRISP3 interaction is well characterized, and specific binding sites have been identified; whereas, CRISP2 has been shown to interact with PSP94 in vitro. Interestingly, human CRISP3 and CRISP2 proteins are closely related showing 71.4% identity. In this study, we identified CRISP2 as a potential binding protein of PSP94 from human sperm. Further, we generated antisera capable of specifically detecting CRISP2 and not CRISP3. In this direction, specific peptides corresponding to the least conserved ion channel regulatory region were synthesized, and polyclonal antibodies were generated against the peptide in rabbits. The binding characteristics of the anti-CRISP2 peptide antibody were evaluated using competitive ELISA. Immunoblotting experiments also confirmed that the peptide was able to generate antibodies capable of detecting the mature CRISP2 protein present in human sperm lysate. Furthermore, this anti-CRISP2 peptide antibody also detected the presence of native CRISP2 on sperm.Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Glicoproteínas/metabolismo , Peptídeos/síntese química , Proteínas Secretadas pela Próstata/metabolismo , Espermatozoides/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Sítios de Ligação , Moléculas de Adesão Celular , Glicoproteínas/química , Glicoproteínas/imunologia , Humanos , Masculino , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Coelhos , Proteínas e Peptídeos Salivares/metabolismo , Proteínas de Plasma Seminal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA