Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771779

RESUMO

X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and ß, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup.

2.
J Synchrotron Radiat ; 31(Pt 2): 399-408, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335147

RESUMO

X-ray ptychography is a coherent diffraction imaging technique based on acquiring multiple diffraction patterns obtained through the illumination of the sample at different partially overlapping probe positions. The diffraction patterns collected are used to retrieve the complex transmittivity function of the sample and the probe using a phase retrieval algorithm. Absorption or phase contrast images of the sample as well as the real and imaginary parts of the probe function can be obtained. Furthermore, X-ray ptychography can also provide spectral information of the sample from absorption or phase shift images by capturing multiple ptychographic projections at varying energies around the resonant energy of the element of interest. However, post-processing of the images is required to extract the spectra. To facilitate this, ProSPyX, a Python package that offers the analysis tools and a graphical user interface required to process spectral ptychography datasets, is presented. Using the PyQt5 Python open-source module for development and design, the software facilitates extraction of absorption and phase spectral information from spectral ptychographic datasets. It also saves the spectra in file formats compatible with other X-ray absorption spectroscopy data analysis software tools, streamlining integration into existing spectroscopic data analysis pipelines. To illustrate its capabilities, ProSPyX was applied to process the spectral ptychography dataset recently acquired on a nickel wire at the SWING beamline of the SOLEIL synchrotron.

3.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37352425

RESUMO

With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials' electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research.


Assuntos
Síncrotrons , Espectrometria por Raios X/métodos
4.
Soft Matter ; 17(2): 331-334, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33320159

RESUMO

The present study investigates early stages of ZIF-8 crystallization up to 5 minutes post mixing of precursor solutions. Dispersive X-ray Absorption Spectroscopy (DXAS) provides a refined understanding of the evolution of the coordination environment during ZIF-8 crystallization. Linear Combination Analysis (LCA) suggests tetrakis(1-methylimidazole)zinc2+ to be a suitable and stable mononuclear structure analogue for some early stage ZIF-8 intermediates. Our results pave the way for more detailed studies on physico-chemical aspects of ZIF-8 crystallization to better control tailoring ZIF-8 materials for specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA