Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sci Rep ; 13(1): 10958, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414788

RESUMO

The advent of combined antiretroviral therapy (cART) has been instrumental in controlling HIV-1 replication and transmission and decreasing associated morbidity and mortality. However, cART alone is not able to cure HIV-1 due to the presence of long-lived, latently infected immune cells, which re-seed plasma viremia when cART is interrupted. Assessment of HIV-cure strategies using ex vivo culture methods for further understanding of the diversity of reactivated HIV, viral outgrowth, and replication dynamics are enhanced using ultrasensitive digital ELISA based on single-molecule array (Simoa) technology to increase the sensitivity of endpoint detection. In viral outgrowth assays (VOA), exponential HIV-1 outgrowth has been shown to be dependent upon initial virus burst size surpassing a critical growth threshold of 5100 HIV-1 RNA copies. Here, we show an association between ultrasensitive HIV-1 Gag p24 concentrations and HIV-1 RNA copy number that characterize viral dynamics below the exponential replication threshold. Single-genome sequencing (SGS) revealed the presence of multiple identical HIV-1 sequences, indicative of low-level replication occurring below the threshold of exponential outgrowth early during a VOA. However, SGS further revealed diverse related HIV variants detectable by ultrasensitive methods that failed to establish exponential outgrowth. Overall, our data suggest that viral outgrowth occurring below the threshold necessary for establishing exponential growth in culture does not preclude replication competence of reactivated HIV, and ultrasensitive detection of HIV-1 p24 may provide a method to detect previously unquantifiable variants. These data strongly support the use of the Simoa platform in a multi-prong approach to measuring latent viral burden and efficacy of therapeutic interventions aimed at an HIV-1 cure.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Cinética , Ensaio de Imunoadsorção Enzimática , Proteína do Núcleo p24 do HIV , RNA , Carga Viral , Linfócitos T CD4-Positivos , Latência Viral
2.
Artigo em Inglês | MEDLINE | ID: mdl-37126090

RESUMO

Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.

3.
Nat Commun ; 14(1): 1638, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015925

RESUMO

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Assuntos
COVID-19 , Humanos , Criança , Adulto , SARS-CoV-2 , Estado Terminal , Citocinas , Fibrinogênio
4.
Immunity ; 56(5): 1132-1147.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030290

RESUMO

HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8+ T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8+ T cells with HIV-infected memory CD4+ T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4+ T cell survival, quiescence, and stemness. Collectively, these pathways negatively regulated HIV expression and ultimately promoted the establishment of latency. As shown previously, we observed that macrophages, but not B cells, promoted latency in CD4+ T cells. The identification of CD8-specific mechanisms of pro-latency activity may favor the development of approaches to eliminate the viral reservoir in people with HIV.


Assuntos
Infecções por HIV , Humanos , Linfócitos T CD8-Positivos , Latência Viral , Linfócitos T CD4-Positivos , Replicação Viral
5.
Nat Microbiol ; 8(2): 299-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690860

RESUMO

Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Linfócitos T CD8-Positivos , Antirretrovirais/uso terapêutico , Macaca mulatta , Infecções por HIV/tratamento farmacológico
7.
Pathog Immun ; 8(2): 115-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455668

RESUMO

Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the "reservoir" of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS' 95-95-95 targets) [6-8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a "cure" remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.

8.
Front Immunol ; 13: 1033672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569952

RESUMO

B cell lymphoma 2 (BCL-2) family proteins are involved in the mitochondrial apoptotic pathway and are key modulators of cellular lifespan, which is dysregulated during human immunodeficiency virus type 1 (HIV-1) and other viral infections, thereby increasing the lifespan of cells harboring virus, including the latent HIV-1 reservoir. Long-lived cells harboring integrated HIV-1 DNA is a major barrier to eradication. Strategies reducing the lifespan of reservoir cells could significantly impact the field of cure research, while also providing insight into immunomodulatory strategies that can crosstalk to other viral infections. Venetoclax is a first-in-class orally bioavailable BCL-2 homology 3 (BH3) mimetic that recently received Food and Drug Administration (FDA) approval for treatment in myeloid and lymphocytic leukemia. Venetoclax has been recently investigated in HIV-1 and demonstrated anti-HIV-1 effects including a reduction in reservoir size. Another immunomodulatory strategy towards reduction in the lifespan of the reservoir is Jak 1/2 inhibition. The Jak STAT pathway has been implicated in BCL-2 and interleukin 10 (IL-10) expression, leading to a downstream effect of cellular senescence. Ruxolitinib and baricitinib are FDA-approved, orally bioavailable Jak 1/2 inhibitors that have been shown to indirectly decay the HIV-1 latent reservoir, and down-regulate markers of HIV-1 persistence, immune dysregulation and reservoir lifespan in vitro and ex vivo. Ruxolitinib recently demonstrated a significant decrease in BCL-2 expression in a human study of virally suppressed people living with HIV (PWH), and baricitinib recently received emergency use approval for the indication of coronavirus disease 2019 (COVID-19), underscoring their safety and efficacy in the viral infection setting. BCL-2 and Jak 1/2 inhibitors could be repurposed as immunomodulators for not only HIV-1 and COVID-19, but other viruses that upregulate BCL-2 anti-apoptotic proteins. This review examines potential routes for BCL-2 and Jak 1/2 inhibitors as immunomodulators for treatment and cure of HIV-1 and other viral infections.


Assuntos
COVID-19 , Infecções por HIV , HIV-1 , Estados Unidos , Humanos , Latência Viral , Janus Quinases/metabolismo , Reposicionamento de Medicamentos , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Nat Commun ; 13(1): 5055, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030289

RESUMO

Antiretroviral therapy (ART) is not curative due to the persistence of a reservoir of HIV-infected cells, particularly in tissues such as lymph nodes, with the potential to cause viral rebound after treatment cessation. In this study, fingolimod (FTY720), a lysophospholipid sphingosine-1-phosphate receptor modulator is administered to SIV-infected rhesus macaques at initiation of ART to block the egress from lymphoid tissues of natural killer and T-cells, thereby promoting proximity between cytolytic cells and infected CD4+ T-cells. When compared with the ART-only controls, FTY720 treatment during the initial weeks of ART induces a profound lymphopenia and increases frequencies of CD8+ T-cells expressing perforin in lymph nodes, but not their killing capacity; FTY720 also increases frequencies of cytolytic NK cells in lymph nodes. This increase of cytolytic cells, however, does not limit measures of viral persistence during ART, including intact proviral genomes. After ART interruption, a subset of animals that initially receives FTY720 displays a modest delay in viral rebound, with reduced plasma viremia and frequencies of infected T follicular helper cells. Further research is needed to optimize the potential utility of FTY720 when coupled with strategies that boost the antiviral function of T-cells in lymphoid tissues.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais , Linfócitos T CD4-Positivos , Cloridrato de Fingolimode , Macaca mulatta , Carga Viral
10.
PLoS Pathog ; 18(7): e1010723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35867722

RESUMO

Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4ß7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/metabolismo , Humanos , Macaca mulatta
11.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230978

RESUMO

Interleukin-10 (IL-10) is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper (Tfh) cell differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph nodes (LNs) were induced by infection and not normalized with antiretroviral therapy (ART). During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including Tfh cells, and predicted the frequency of CD4+ Tfh cells and their cell-associated SIV-DNA content during ART, respectively. In ART-treated rhesus macaques, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and, by extension, LN memory CD4+ T cells, including Tfh cells and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Interleucina-10/genética , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico
12.
Methods Mol Biol ; 2407: 69-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985658

RESUMO

During antiretroviral therapy (ART), HIV-1 persists as a latent reservoir in CD4+ T cell subsets in central (TCM), transitional (TTM) and effector memory (TEM) CD4+ T cells. Understanding the mechanisms that support HIV-1 latency in each of these subsets is essential to the identification of cure strategies to eliminate them. Due to the very low frequency of latently infected cells in vivo, model systems that can accurately reflect the heterogenous population of HIV-1 infected cells are a critical component in HIV cure discoveries. Here, we describe a novel primary cell-based model of HIV-1 latency that recapitulates the complex dynamics of the establishment and maintenance of the latent reservoir in different memory T cell subsets. The latency and reversion assay (LARA ) culture conditions uniquely retain phenotypically and transcriptionally distinct memory CD4+ T cell subsets that allow in a single assay to assess LRA activity in each memory subset and differential examination of the dynamics of HIV latency reversal.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Humanos , Fator de Crescimento Transformador beta , Latência Viral
13.
Methods Mol Biol ; 2407: 315-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985673

RESUMO

Quantifying the number of cells harboring inducible and replication competent HIV-1 provirus is critical to evaluating HIV-1 cure interventions, but precise quantification of the latent reservoir has proven to be technically challenging. Existing protocols to quantify the frequency of replication-competent HIV-1 in resting CD4+ T cells from long-term ART treated individuals have helped to investigate the dynamics of reservoir stability, however these approaches have significant barriers to the induction of HIV-1 expression required to effectively evaluate the intact reservoir. Differentiation of CD4+ T cells to an effector memory phenotype is a successful strategy for promoting latency reversal in vitro, and significantly enhances the performance and sensitivity of viral outgrowth assays.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Humanos , Provírus , Carga Viral , Latência Viral , Replicação Viral
14.
STAR Protoc ; 2(4): 100924, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34761236

RESUMO

Here, we describe a protocol for cell-based detection of autoantibodies from human plasma and serum samples using a standard flow cytometer. The protocol allows detection of autoantibodies against a wide array of extracellular antigens. Antigen coverage is limited to the cell types tested, and researchers will need to further determine if autoantibody-positive samples correlate with cytotoxic or clinical outcomes. This protocol is less expensive and faster to perform when compared to protein microarrays and requires no prior knowledge of potential targets. For complete details on the use and execution of this protocol, please refer to Wong et al. (2021).


Assuntos
Autoanticorpos/sangue , Citometria de Fluxo/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Cultura de Células , Linhagem Celular , Feminino , Corantes Fluorescentes , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Viruses ; 13(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34452317

RESUMO

An impediment to curing HIV-1 infection is the persistence of latently infected cells in ART-treated people living with HIV (PLWH). A key strategy for curing HIV-1 infection is to activate transcription and translation of latent virus using latency reversing agents (LRAs) and eliminate cells harboring reactivated virus via viral cytopathic effect or immune clearance. In this review, we provide an overview of available LRAs and their use in clinical trials. Furthermore, we describe recent data suggesting that CD8+ T cells promote HIV-1 latency in the context of ART, even in the presence of LRAs, which might at least partially explain the clinical inefficiency of previous "shock and kill" trials. Here, we propose a novel cure strategy called "unlock, shock, disarm, and kill". The general premise of this strategy is to shut down the pro-latency function(s) of CD8+ T cells, use LRAs to reverse HIV-1 latency, counteract anti-apoptotic molecules, and engage natural killer (NK) cells to mediate the killing of cells harboring reactivated latent HIV-1.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/fisiologia , Células Matadoras Naturais/imunologia , Ativação Viral/imunologia , Animais , Ensaios Clínicos como Assunto , Infecções por HIV/virologia , Humanos , Camundongos , Latência Viral/imunologia
17.
Cell Rep Med ; 2(6): 100321, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34075365

RESUMO

The pathogenesis of severe coronavirus disease 2019 (COVID-19) remains poorly understood. While several studies suggest that immune dysregulation plays a central role, the key mediators of this process are yet to be defined. Here, we demonstrate that plasma from a high proportion (93%) of critically ill COVID-19 patients, but not healthy controls, contains broadly auto-reactive immunoglobulin M (IgM) and less frequently auto-reactive IgG or IgA. Importantly, these auto-IgMs preferentially recognize primary human lung cells in vitro, including pulmonary endothelial and epithelial cells. By using a combination of flow cytometry, analytical proteome microarray technology, and lactose dehydrogenase (LDH)-release cytotoxicity assays, we identify high-affinity, complement-fixing, auto-reactive IgM directed against 260 candidate autoantigens, including numerous molecules preferentially expressed on the cellular membranes of pulmonary, vascular, gastrointestinal, and renal tissues. These findings suggest that broad IgM-mediated autoimmune reactivity may be involved in the pathogenesis of severe COVID-19, thereby identifying a potential target for therapeutic interventions.


Assuntos
Autoanticorpos/imunologia , COVID-19/patologia , Imunoglobulina M/imunologia , Autoanticorpos/sangue , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Complemento C4/metabolismo , Estado Terminal , Humanos , Imunoglobulina M/sangue , Unidades de Terapia Intensiva , Pulmão/metabolismo , Análise Serial de Proteínas , Proteoma/análise , SARS-CoV-2/isolamento & purificação
18.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33568515

RESUMO

Inducing latency reversal to reveal infected cells to the host immune system represents a potential strategy to cure HIV infection. In separate studies, we have previously shown that CD8+ T cells may contribute to the maintenance of viral latency and identified a novel SMAC mimetic/IAP inhibitor (AZD5582) capable of reversing HIV/SIV latency in vivo by activating the non-canonical (nc) NF-κB pathway. Here, we use AZD5582 in combination with antibody-mediated depletion of CD8α+ cells to further evaluate the role of CD8+ T cells in viral latency maintenance. Six rhesus macaques (RM) were infected with SIVmac239 and treated with ART starting at week 8 post-infection. After 84-85 weeks of ART, all animals received a single dose of the anti-CD8α depleting antibody (Ab), MT807R1 (50mg/kg, s.c.), followed by 5 weekly doses of AZD5582 (0.1 mg/kg, i.v.). Following CD8α depletion + AZD5582 combined treatment, 100% of RMs experienced on-ART viremia above 60 copies per ml of plasma. In comparator groups of ART-suppressed SIV-infected RMs treated with AZD5582 only or CD8α depletion only, on-ART viremia was experienced by 56% and 57% of the animals respectively. Furthermore, the frequency of increased viremic episodes during the treatment period was greater in the CD8α depletion + AZD5582 group as compared to other groups. Mathematical modeling of virus reactivation suggested that, in addition to viral dynamics during acute infection, CD8α depletion influenced the response to AZD5582. This work suggests that the latency reversal induced by activation of the ncNF-κB signaling pathway with AZD5582 can be enhanced by CD8α+ cell depletion.

19.
PLoS Pathog ; 16(9): e1008821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941545

RESUMO

MHC-I-restricted, virus-specific cytotoxic CD8+ T cells (CTLs) may control human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication via the recognition and killing of productively infected CD4+ T cells. Several studies in SIV-infected macaques suggest that CD8+ T cells may also decrease virus production by suppressing viral transcription. Here, we show that non-HIV-specific, TCR-activated non-cytolytic CD8+ T cells suppress HIV transcription via a virus- and MHC-independent immunoregulatory mechanism that modulates CD4+ T cell proliferation and activation. We also demonstrate that this CD8+ T cell-mediated effect promotes the survival of infected CD4+ T cells harboring integrated, inducible virus. Finally, we used RNA sequencing and secretome analyses to identify candidate cellular pathways that are involved in the virus-silencing mediated by these CD8+ T cells. This study characterizes a previously undescribed mechanism of immune-mediated HIV silencing that may be involved in the establishment and maintenance of the reservoir under antiretroviral therapy and therefore represent a major obstacle to HIV eradication.


Assuntos
Linfócitos T CD8-Positivos/imunologia , HIV-1/fisiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Inata , Transcrição Gênica/imunologia , Replicação Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Humanos , Macaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA