RESUMO
The next generation of all-solid-state lithium-ion batteries (ASLIBs) based on solid-state sulfide electrolytes (SSEs) is closest to commercialization. Understanding the overall safety behavior of SSE-ASLIBs is necessary for their product design and commercialization. However, their safety behavior in real-life situations, such as battery exposure to high temperature, overcharge, mechanical rupture, and air exposure, remains largely unknown. Herein, we report preliminary but needed evidence of (i) significantly improved resistance to electrical shorting at high temperatures, (ii) reduced heat generation when subjected to excessive heat, (iii) tolerable harmful gas generation when subjected to air exposure followed by high-temperature heating, and (iv) high-voltage charge stability when a battery is overcharged (5.5 V charge) in SSE-based ASLIBs compared to commercial liquid electrolyte-based LIBs (LE-LIBs). Furthermore, the result shows that SSEs can self-induce a fast and effective battery shut-down capability in ASLIBs and avoid thermal runaway upon mechanical damage and exposure to air.
RESUMO
Lithium-ion batteries (LIBs) have transformed modern electronics and rapidly advancing electric vehicles (EVs) due to their high energy and power densities, cycle-life, and acceptable safety. However, the comprehensive commercialization of EVs necessitates the invention of LIBs with much enhanced and stable electrochemical performances, including higher energy/power density, cycle-life, and operational safety, but at a lower cost. Herein, we report a simple method for improving the high-voltage (up to 4.5 V) charge capability of LIBs by applying a Li+-ion-conducting artificial cathode-electrolyte interface (Li+-ACEI) on the state-of-the-art cathode, LiCoO2 (LCO). A superionic ceramic single Li+ ion conductor, lithium aluminum germanium phosphate (Li1.5Al0.5Ge1.5(PO4)3, LAGP), has been used as a novel Li+-ACEI. The application of Li+-ACEI on LCO involves a scalable and straightforward wet chemical process (sol-gel method). Cycling performance, including high voltage charge, of bare and LAGP-coated cathodes has been determined against the most energy-dense anode (lithium, Li metal) and state-of-the-art carbonate-based organic liquid electrolyte (OLE). The application of an LAGP-based Li+-ACEI on LCO displays many improvements: (i) reduced charge-transfer and interfacial resistance; (ii) higher discharge capacity (167.5 vs 155 mAh/g) at 0.2C; (iii) higher Coulombic efficiency (98.9 vs 97.8%) over 100 cycles; and (iv) higher rate capability (143 vs 80.1 mAh/g) at 4C. Structural and morphological characterizations have substantiated the improved electrochemical behavior of bare and Li+-ACEI LCO cathodes against the Li anode.