Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(27): 11932-11942, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195748

RESUMO

Cage forming proteins have numerous potential applications in biomedicine and biotechnology, where the iron storage ferritin is a widely used example. However, controlling ferritin cage assembly/disassembly remains challenging, typically requiring extreme conditions incompatible with many desirable cargoes, particularly for more fragile biopharmaceuticals. Recently, a ferritin from the hyperthermophile bacterium Thermotoga maritima (TmFtn) has been shown to have reversible assembly under mild conditions, offering greater potential biocompatibility in terms of cargo access and encapsulation. Like Archeoglobus fulgidus ferritin (AfFtn), TmFtn forms 24mer cages mediated by metal ions (Mg2+). We have solved the crystal structure of the wild type TmFtn and several mutants displaying different assembly/disassembly properties. These data combined with other biophysical studies allow us to suggest candidate interfacial amino acids crucial in controlling assembly. This work deepens our understanding of how these ferritin complexes assemble and is a useful step towards production of triggerable ferritins in which these properties can be finely designed and controlled.


Assuntos
Ferritinas , Ferro , Ferritinas/genética , Ferro/metabolismo , Thermotoga maritima
2.
Nano Lett ; 19(6): 3918-3924, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117758

RESUMO

Development of protein cages for encapsulation of active enzyme cargoes and their subsequent arrangement into a controllable three-dimensional array is highly desirable. However, cargo capture is typically challenging because of difficulties in achieving reversible assembly/disassembly of protein cages in mild conditions. Herein we show that by using an unusual ferritin cage protein that undergoes triggerable assembly under mild conditions, we can achieve reversible filling with protein cargoes including an active enzyme. We demonstrate that these filled cages can be arrayed in three-dimensional crystal lattices and have an additional chaperone-like effect, increasing both thermostability and enzymatic activity of the encapsulated enzyme.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Proteínas de Bactérias/química , Preparações de Ação Retardada/química , Ferritinas/química , Thermotoga maritima/química , Sequência de Aminoácidos , Animais , Estabilidade Enzimática , Enzimas Imobilizadas/administração & dosagem , Enzimas Imobilizadas/química , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/química , Modelos Moleculares , Muramidase/administração & dosagem , Muramidase/química , Nanoestruturas/química , Ligação Proteica , Dobramento de Proteína
3.
PLoS Biol ; 14(5): e1002465, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27224426

RESUMO

D-aminoacyl-tRNA deacylase (DTD) removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD's invariant, cross-subunit Gly-cisPro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR) spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNAGly. High-resolution crystal structure reveals that the architecture of DTD's chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu) and DTD demonstrate that EF-Tu precludes Gly-tRNAGly misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNAGly. Our in vitro observations are substantiated by cell-based studies in Escherichia coli that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2'-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD's activity on Gly-tRNAGly. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Alanina/química , Alanina/metabolismo , Aminoaciltransferases/genética , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicina/química , Glicina/metabolismo , Hidrólise , Espectroscopia de Ressonância Magnética , Fator Tu de Elongação de Peptídeos/genética , Plasmodium falciparum/enzimologia , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Glicina/química , RNA de Transferência de Glicina/metabolismo , Ribossomos/metabolismo , Especificidade por Substrato , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA