Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36980909

RESUMO

Genomic regions governing grain protein content (GPC), 1000 kernel weight (TKW), and normalized difference vegetation index (NDVI) were studied in a set of 280 bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using a 35K Axiom array and phenotyped in three environments. A total of 26 marker-trait associations (MTAs) were detected on 18 chromosomes covering the A, B, and D subgenomes of bread wheat. The GPC showed the maximum MTAs (16), followed by NDVI (6), and TKW (4). A maximum of 10 MTAs was located on the B subgenome, whereas, 8 MTAs each were mapped on the A and D subgenomes. In silico analysis suggest that the SNPs were located on important putative candidate genes such as NAC domain superfamily, zinc finger RING-H2-type, aspartic peptidase domain, folylpolyglutamate synthase, serine/threonine-protein kinase LRK10, pentatricopeptide repeat, protein kinase-like domain superfamily, cytochrome P450, and expansin. These candidate genes were found to have different roles including regulation of stress tolerance, nutrient remobilization, protein accumulation, nitrogen utilization, photosynthesis, grain filling, mitochondrial function, and kernel development. The effects of newly identified MTAs will be validated in different genetic backgrounds for further utilization in marker-aided breeding.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Grãos , Triticum/genética , Pão , Melhoramento Vegetal , Proteínas Quinases
2.
Front Plant Sci ; 13: 943033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061792

RESUMO

Identification of marker trait association is a prerequisite for marker-assisted breeding. To find markers linked with traits under heat and drought stress in bread wheat (Triticum aestivum L.), we performed a genome-wide association study (GWAS). GWAS mapping panel used in this study consists of advanced breeding lines from the IARI stress breeding programme produced by pairwise and complex crosses. Phenotyping was done at multi locations namely New Delhi, Karnal, Indore, Jharkhand and Pune with augmented-RCBD design under different moisture and heat stress regimes, namely timely sown irrigated (IR), timely sown restricted irrigated (RI) and late sown (LS) conditions. Yield and its component traits, viz., Days to Heading (DH), Days to Maturity (DM), Normalized Difference Vegetation Index (NDVI), Chlorophyll Content (SPAD), Canopy temperature (CT), Plant Height (PH), Thousand grain weight (TGW), Grain weight per spike (GWPS), Plot Yield (PLTY) and Biomass (BMS) were phenotyped. Analysis of variance and descriptive statistics revealed significant differences among the studied traits. Genotyping was done using the 35k SNP Wheat Breeder's Genotyping Array. Population structure and diversity analysis using filtered 10,546 markers revealed two subpopulations with sufficient diversity. A large whole genome LD block size of 7.15 MB was obtained at half LD decay value. Genome-wide association search identified 57 unique markers associated with various traits across the locations. Twenty-three markers were identified to be stable, among them nine pleiotropic markers were also identified. In silico search of the identified markers against the IWGSC ref genome revealed the presence of a majority of the SNPs at or near the gene coding region. These SNPs can be used for marker-assisted transfer of genes/QTLs after validation to develop climate-resilient cultivars.

3.
Front Genet ; 13: 982589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092913

RESUMO

Genomic regions governing days to heading (DH), grain filling duration (GFD), grain number per spike (GNPS), grain weight per spike (GWPS), plant height (PH), and grain yield (GY) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association studies (GWAS) panel was genotyped using a 35K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 27 Bonferroni-corrected marker-trait associations (MTAs) on 15 chromosomes representing all three wheat subgenomes. The GFD showed the highest MTAs (8), followed by GWPS (7), GY (4), GNPS (3), PH (3), and DH (2). Furthermore, 20 MTAs were identified with more than 10% phenotypic variation. A total of five stable MTAs (AX-95024590, AX-94425015, AX-95210025 AX-94539354, and AX-94978133) were identified in more than one environment and associated with the expression of DH, GFD, GNPS, and GY. Similarly, two novel pleiotropic genomic regions with associated MTAs i.e. AX-94978133 (4D) and AX-94539354 (6A) harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the SNPs were located on important putative candidate genes such as F-box-like domain superfamily, Lateral organ boundaries, LOB, Thioredoxin-like superfamily Glutathione S-transferase, RNA-binding domain superfamily, UDP-glycosyltransferase family, Serine/threonine-protein kinase, Expansin, Patatin, Exocyst complex component Exo70, DUF1618 domain, Protein kinase domain involved in the regulation of grain size, grain number, growth and development, grain filling duration, and abiotic stress tolerance. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).

4.
Sci Rep ; 12(1): 12444, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858934

RESUMO

Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.


Assuntos
Desnutrição , Triticum , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla , Ferro/metabolismo , Desnutrição/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/genética , Zinco/metabolismo
5.
Nanomaterials (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443916

RESUMO

Rapid advances in nanotechnology have led to its emergence as a tool for the development of green synthesized noble metal nanoparticles, especially silver nanoparticles (AgNPs), for applications in diverse fields such as human health, the environment and industry. The importance of AgNPs is because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including the pharmaceutical industry. Countries with high biodiversity require the collection and transformation of information about biological assets into processes, associations, methods and tools that must be combined with the sustainable utilization of biological diversity. Therefore, this review paper discusses the applicable studies of the biosynthesis of AgNPs and their antimicrobial activities towards microorganisms in different areas viz. medicine and agriculture. The confirmed antiviral properties of AgNPs promote their applicability for SARS-CoV-2 treatment, based on assimilating the virus' activities with those of similar viruses via in vivo studies. In this review, an insight into the cytotoxicity and safety issues of AgNPs, along with their future prospects, is also provided.

6.
Anal Sci ; 37(2): 283-292, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32863336

RESUMO

A BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) based pioneering sensing material (HLPy) having 2-amino pyridine as receptor was synthesized and used for the selective detection of Hg2+ ions. The synthesized HLPy features a high affinity towards Hg2+ (ka = 2.04 × 105 M-1), accompanied by effective quenching of fluorescence in DMF:H2O (1:9 v/v, 10 mM HEPES buffer, pH 7.4) with 54 nM limit of detection (LOD). The emission titration experiments (Job's plot) in the presence of varying mole-fraction of Hg2+ ions reveals the formation of non-fluorescent 2:1 coordination complex [Hg(LPy)2]. The resulting non-fluorescent [Hg(LPy)2] was thoroughly characterized using various spectroscopic techniques and analyses. Interestingly, the non-fluorescent complex [Hg(LPy)2] is able to specifically respond towards Cys over other biothiols and amino acids through a reversible de-complexation mechanism. As a result, the remarkable recovery of the fluorescence can be observed. The limit of detection (LOD) for Cys detection is estimated to be 29 nM in DMF:H2O (1:9 v/v, 10 mM HEPES buffer, pH 8.0). The reversibility and reusability of [Hg(LPy)2] were achieved by the sequential addition of Cys and Hg2+ ions up to five cycles. Moreover, the removal of Hg2+ ions up to 89% from aqueous samples using HLPy was successfully demonstrated.


Assuntos
Compostos de Boro/química , Complexos de Coordenação/química , Cisteína/análise , Corantes Fluorescentes/química , Mercúrio/química , Estrutura Molecular , Espectrometria de Fluorescência
7.
Anal Sci ; 36(6): 659-663, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761811

RESUMO

Two novel malonyl-based chemosensors, N,N'-bis(ethyl-4'-benzoate)-1,3-propanediamide (1) and N,N'-bis(ethyl-3'-benzoate)-1,3-propanediamide (2), have been synthesized and screened towards various biologically important metal ions such as Na+, Mg2+, K+, Ca2+, Al3+, Cr3+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Ti3+, and Pb2+. The emission spectral studies of both 1 and 2 displayed 84 - 91% turn-off emission responses selectively with Fe3+ ion in aqueous buffer (MeCN/H2O, 1:4, v/v, pH = 7.4) solution. Chemosensors 1 and 2 exhibited remarkable sensing ability towards Fe3+ ion over other metal ions with limit of detection (LOD) of 4.28 and 4.33 µM, respectively. The binding stoichiometry of 1 and 2 with Fe3+ ion was studied by Benesi-Hildebrand fitting, Stern-Volmer plot and Job's plots, revealing that both chemosensors (1 - 2) bind with Fe3+ metal ion in 1:1 stoichiometric ratio with the apparent association constant (Ka) 8.90 × 103 and 11.16 × 103 M-1, respectively. Furthermore, the interactions of chemosensors (1 - 2) with metal ion were also investigated by using density functional theory (DFT) at B3LYP hybrid functional using 6-31G and LanL2DZ basis sets.

8.
3 Biotech ; 8(8): 332, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30073117

RESUMO

Assessment of genetic diversity is a pre-requisite to broaden the genetic background of cultivated base of sweet corn, an endosperm mutant of field corn that alters starch biosynthesis pathway in endosperm. In the current investigation, genetic divergence among 39 inbred lines was assessed on the basis of 14 agro-morphological traits, two quality parameters and 63 microsatellite markers, selected on the basis of their association with QTLs affecting kernel quality. The cluster analysis based on unweighted pair-group method using arithmetic averages for agro-morphological and quality traits grouped the 39 inbreds into three clusters with 5, 14 and 20 genotypes, respectively. The unweighted neighbor-joining method for microsatellite markers also categorized the inbred lines into three major clusters grouping 10, 9 and 20 genotypes in cluster I, II and III, respectively. The two cluster distribution patterns showed approximately 36 percent similarity. The assay of 30 microsatellite repeats identified 82 alleles with allele size ranging from 80 to 400 bp. The major allele frequency and PIC value of the markers ranged from 0.42 to 0.79 and 0.27 to 0.63, respectively, which suggested the presence of high amount of polymorphism among the inbreds. The average heterozygosity was recorded to be 0.19 which signifies proper maintenance of inbred population. Principle co-ordinate analysis also depicted diverse nature of inbred lines and agreed well with the previously determined clustering pattern. This study has identified several inbreds, having good yield and high sugar content which will not only enhance the genetic background of sweet corn germplasm but will also lead to development of high-yielding hybrids with improved quality.

9.
Artigo em Inglês | MEDLINE | ID: mdl-25254057

RESUMO

The goal of this study was to investigate the hepatoprotective effects of aqueous extract of Camellia sinensis or green tea extract (AQGTE) in chronic ethanol-induced albino rats. All animals were divided into 4 groups in the study for a 5-week duration. 50% ethanol was given orally to the rats with two doses (5 mg/kg bw and 10 mg/kg bw) of AQGTE. Ethanol administration caused a significant increase in the levels of plasma and serum enzymatic markers, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), and nonenzymatic markers (cholesterol and triglycerides), lipid peroxidation contents, malondialdehyde (MDA), and glutathione-S-transferase (GST), and decreased the activities of total proteins, albumin, and cellular antioxidant defense enzymes such as superoxide dismutase (SOD). The elevation and reduction in these biochemical enzymes caused the damage in hepatocytes histologically due to the high production of ROS, which retards the antioxidant defense capacity of cell. AQGTE was capable of recovering the level of these markers and the damaged hepatocytes to their normal structures. These results support the suggestion that AQGTE was able to enhance hepatoprotective and antioxidant effects in vivo against ethanol-induced toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA