Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Spinal Cord Med ; : 1-9, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010833

RESUMO

OBJECTIVE: Spinal cord injury (SCI) interrupts motor, sensory, and autonomic pathways, impairing mobility and increasing heat storage during warm seasonal temperatures due to compromised autonomic control of vasodilation and sweating and recognition of body temperature. Thus, persons with SCI are more vulnerable to hyperthermia and its adverse effects. However, information regarding how persons with SCI perceive warmer seasons and whether thermal discomfort during warmer seasons restricts routine activities remains anecdotal. DESIGN: Cross-sectional, self-report surveys. SETTING: VA Medical Center and Kessler Institute for Rehabilitation. PARTICIPANTS: Three groups of 50 participants each: tetraplegia, paraplegia, and matched non-SCI controls. OUTCOME MEASURES: Tetraplegia, paraplegia, and control groups responded "yes" or "no" when asked whether warm seasonal temperatures adversely affected comfort or participation in routine activities. RESULTS: The percentage of responses differed among tetraplegia, paraplegia, and control groups when asked if they required ≥20 min to cool down once overheated (44 vs. 20 vs. 12%; X2 = 14.7, P < 0.001), whether heat-related discomfort limited their ability to go outside (62 vs. 34 vs. 32%; X2 = 11.5, P = 0.003), if they needed to use a water-mister because of the heat (70 vs. 44 vs. 42%; X2 = 9.8, P = 0.008), and if heat-related discomfort limited participation in social activities (40 vs. 20 vs. 16%; X2 = 8.7, P = 0.01). CONCLUSION: Warmer seasonal temperatures had a greater negative impact on reported comfort and daily activities of persons with SCI than non-SCI controls. Those with tetraplegia were most adversely affected. Our findings warrant increasing awareness and identifying interventions to address the vulnerability of persons with SCI to hyperthermia.

2.
J Neurotrauma ; 38(15): 2141-2150, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882698

RESUMO

Among persons with high spinal cord injury (Hi-SCI: > T5), changes in core body temperature (Tcore) and cognitive performance during heat exposure appear related to degree of sympathetic interruption. Twenty men with Hi-SCI (C4-T4, American Spinal Injury Association Impairment Scale [AIS] A-B) and 19 matched, able-bodied controls were acclimated to 27°C baseline (BL) before exposure to 35°C heat challenge (HC). Two groups, differentiated by increase in Tcore during HC, were identified: high responders (HR-SCI: ΔTcore ≥0.5°C; n = 13, C4-T2) and low responders (LR-SCI: ΔTcore <0.5°C; n = 7, C4-T4). Tcore, distal skin temperatures (Tskavg), and distal microvascular perfusion (LDFboth feet) were measured, as were indices of sympathetic integrity, mean arterial pressure (MAP), and extremity sweat rate (SRavg). Cognitive performance was assessed at BL and post-HC, using the Stroop Color and Word and Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) Digit Span tests. At BL, Tcore of the HR-SCI group (36.6 ± 0.4°C) was lower than that for the LR-SCI (37.1 ± 0.3°C; p = 0.011) and control groups (37.3 ± 0.3°C; p < 0.001). After HC, Tcore was not different among groups. MAP of the HR-SCI group (70.9 ± 9.8 mm Hg) was lower than that of the LR-SCI (81.8 ± 7.0 mm Hg; p = 0.048) and control groups (89.9 ± 9.9 mm Hg; p < 0.001). SRavg increased more in the control group (77.0 ± 52.5 nL/cm2/min) than in the HR-SCI group (15.5 ± 22.0 nL/cm2/min; p = 0.001). Only the HR-SCI group had significant increases in T-Scores of Stroop Word (7.5 ± 4.4; p < 0.001), WAIS-IV Digit Span Sequence (1.9 ± 1.8; p = 0.002), and WAIS-IV Digit Span Total (1.4 ± 1.6; p = 0.008). Persons with SCI who responded to HC with a greater change in Tcore demonstrated evidence of greater sympathetic interruption and had an associated improvement in cognitive performance.


Assuntos
Temperatura Corporal/fisiologia , Cognição/fisiologia , Temperatura Alta , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/psicologia , Sistema Nervoso Simpático/fisiopatologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Fatores de Risco
3.
Temperature (Austin) ; 7(2): 114-128, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-33015240

RESUMO

Environmental heat stress can negatively impact health, work capacity, and athletic performance and potentially to lead to life-threatening consequences if not mitigated. With the upcoming Toyko Olympic games to be held during anticipated warm ambient temperatures (up to 29°C), and with spectators potentially spending long durations of time outdoors, certain populations of persons with impaired thermoregulatory capacity will be at higher risk of heat-related illness from passive heat stress. Persons with spinal cord injury (SCI) are one of these groups as a result of a decentralized sympathetic nervous system, which leaves them with impairment in convective and evaporative cooling via vasodilation and sweating, respectively. This review summarizes (1) thermoregulatory physiological responses of persons with SCI under passive heat stress: the effect of level and completeness of injury; (2) the impact of passive heat stress on quality of life (QOL), outdoor participation, behavioral thermoregulation, and cognition; (3) recommendations and education for clinicians providing health care for persons with SCI; and (4) suggestions of future directions for exploring the gaps in the literature on passive heat stress in persons with SCI. This article aims to equip consumers with SCI and health-care professionals with the most up-to-date knowledge on passive heat stress responses in persons with SCI, so that their attendance at the Olympic games can be done with maximal safety and enjoyment.

4.
Hear Res ; 346: 1-13, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28087416

RESUMO

The tympanic membrane (TM) has a key role in transmitting sounds to the inner ear, but a concise description of how the TM performs this function remains elusive. This paper probes TM operation by applying a free field click stimulus to the gerbil ear and exploring the consequent motions of the TM and umbo. Motions of the TM were measured both on radial tracks starting close to the umbo and on a grid distal and adjacent to the umbo. The experimental results confirmed the high fidelity of sound transmission from the ear canal to the umbo. A delay of 5-15 µs was seen in the onset of TM motion between points just adjacent to the umbo and mid-radial points. The TM responded with a ringing motion, with different locations possessing different primary ringing frequencies. A simple analytic model from the literature, treating the TM as a string, was used to explore the experimental results. The click-based experiments and analysis led to the following description of TM operation: A transient sound pressure on the TM causes a transient initial TM motion that is maximal âˆ¼ at the TM's radial midpoints. Mechanical forces generated by this initial prominent TM distortion then pull the umbo inward, leading to a delayed umbo response. The initial TM deformation also gives rise to prolonged mechanical ringing on the TM that does not result in significant umbo motion, likely due to destructive interference from the range of ringing frequencies. Thus, the umbo's response is a high-fidelity representation of the transient stimulus. Because any sound can be considered as a consecutive series of clicks, this description is applicable to any sound stimulus.


Assuntos
Meato Acústico Externo/fisiologia , Membrana Timpânica/fisiologia , Estimulação Acústica , Animais , Fenômenos Biomecânicos , Gerbillinae , Modelos Biológicos , Movimento (Física) , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA