Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Phytomedicine ; 84: 153484, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667839

RESUMO

BACKGROUND: Celecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB. PURPOSE: We hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells. STUDY DESIGN: The potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/ß-catenin signaling pathways. METHODS: The effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model. RESULTS: PIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/ß-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice. CONCLUSION: The outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Celecoxib/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Sinergismo Farmacológico , Humanos , Camundongos , Ratos
3.
Free Radic Biol Med ; 156: 70-82, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32561319

RESUMO

Deoxynivalenol is a trichothecene mycotoxin which naturally contaminates small grain, cereals intended for human and animal consumption. Investigations for dermal toxicity of DON has been needed and highlighted by WHO. Previous studies on dermal toxicity suggest that DON has DNA damaging potential leading to skin tumor initiation in mice skin. However, considering its toxicological manifestations arising after dermal exposure, strategies for its prevention/protection are barely available in literatute. Collectively, our study demonstrated that N-acetylcysteine (NAC), precursor of glutathione, significantly alters the genotoxic potential of DON. Further NAC in combination with Celecoxib (CXB) inhibits tumor growth by altering antioxidant status and increasing autophagy in DON initiated Swiss mice. Despite the broad spectrum use of CXB, its use is limited by the concerns about its adverse effects on the cardiovascular system. Serum parameters and histology analysis revealed that CXB (2 mg) when applied topically for 24 weeks did not impart any cardiovascular toxicity which could be because skin permeation potential of CXB was quite low when analyzed through HPLC analysis. Although the anticancer effects of CXB and NAC have been studied, however, the combination of NAC and CXB has yet not been explored for any cancer treatment. Therefore our observations provide additional insights into the therapeutic effects of combinatorial treatment of CXB and NAC against skin tumor prevention. This approach might form a novel alternative strategy for skin cancer treatment as well as skin associated toxicities caused by mycotoxins such as DON. This combinatorial approach can overcome the limitations associated with the use of CXB for long term as topical application of the same seems to be safe in comparison to the oral mode of administration.


Assuntos
Acetilcisteína , Neoplasias Cutâneas , Animais , Autofagia , Celecoxib/toxicidade , Camundongos , Tricotecenos
4.
Chem Biol Interact ; 326: 109128, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32416088

RESUMO

Exposure to mycotoxins is mostly by ingestion but also occurs by the dermal and inhalation routes. The present study for the first time demonstrated that mycotoxin Deoxynivalenol (DON), permeates through Swiss albino mice skin, which demands awareness of health risks in people who are dermally exposed to mycotoxins especially agricultural farmers. Despite the widespread contamination of DON in food commodities studies to alleviate DON's toxicity are sparsely reported. Thus effective measures to combat mycotoxins associated toxicity remains an imperative aspect to be considered from the angle of dermal exposure. Topical application of Celecoxib (1-2 mg), followed by DON (100 µg) application on the dorsal side of mice, resulted in substantial decrease in DON-induced (i) edema, hyperplasia, cell proliferation (ii) inhibition of cytokine and prostaglandin-E2 levels (iii) phosphorylation of ERK1/2, JNK, p38, MAPKKs, CREB, P90-RSK (iv) downregulation of c-Jun, c- Fos, phospho-NF-kB and their downstream target proteins cyclin D1 and COX-2. Using Ro-31-8220 (Protein-Kinase-C inhibitor), it was observed PKC was responsible for DON induced upregulation of COX-2 and iNOS proteins. Treatment of Celecoxib decreased DON-induced translocation of Protein Kinase C isozymes (α,ε,γ), demonstrating the role of PKC in DON-mediated biochemical and molecular alterations responsible for its dermal toxicity. The present findings indicate that topical application of celecoxib is effective in the management of inflammatory skin disorders induced by foodborne fungal toxin DON. The skin permeation potential of Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor NSAID, was also assessed, and the results indicated that the permeation was relatively lower as compared to the oral mode of administration. Hence topical use of celecoxib may be preferred over oral dosing because of lower systemic absorption and to avoid the unwanted side effects. This study provides a prospect for exploring the clinical efficacy of topically applied COX-2 inhibitors for the management of inflammatory skin disorders induced by foodborne fungal toxins.


Assuntos
Celecoxib/farmacologia , Proliferação de Células/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Proteína Quinase C/metabolismo , Pele/efeitos dos fármacos , Tricotecenos/efeitos adversos , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Inflamação/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo
5.
Daru ; 27(1): 219-231, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31001735

RESUMO

BACKGROUND: Diethylene glycol monoethyl ether (DEGEE) is widely used as a solubilizer in cosmetics as well as in oral, topical, transdermal and injectable pharmaceutical formulations. Due to the unavailability of detailed toxicological studies on DEGEE, the Scientific Committee on Consumer Products (SCCP) found its toxicological reports to be unsatisfactory, comprising only summaries. Also, a few reports have raised concern on the use of DEGEE as it might cause damage to the kidneys. OBJECTIVE: Safety assessment of DEGEE using in vitro and in vivo models. METHODS: In vitro effects of DEGEE (0.5-25 mg/ml) were assessed in the HEK293 human embryonic kidney cells. In vivo effects were evaluated after single acute exposure of DEGEE via intraperitoneal route in Swiss albino mice and further, a 28 days subchronic exposure study was conducted where DEGEE was administered orally, once daily. RESULTS: DEGEE was cytotoxic to HEK293 cells, and an IC50 of 15 mg/ml was established. An increase in the intracellular levels of ROS and alteration in the mitochondrial membrane potential led to nuclear fragmentation and induction of apoptosis in these cells. Survival rate of animals administered intraperitoneally with a single acute dose of 1000 mg/kg DEGEE was 100% with no significant changes in the behavioural and histological parameters. However, the dose of 3000 mg/kg and above led to total mortality within 14 days of acute exposure. Subchronic oral exposure of 500-2000 mg/kg DEGEE showed no significant changes in the hematological, biochemical and histopathological parameters. CONCLUSIONS: The in vitro findings indicate that the nephrotoxic potential of DEGEE cannot be ruled out. The results of the in vivo studies reveal that the degree of toxic effects shown by DEGEE varies, depending on the dose, duration of exposure and routes of administration. Therefore, the present findings are of relevance and thorough studies should be conducted before using this substance in clinical formulations. Graphical abstract Evaluation of the toxic potential of Diethylene glycol monoethyl ether.


Assuntos
Etilenoglicóis/toxicidade , Excipientes/toxicidade , Rim/citologia , Administração Oral , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração Inibidora 50 , Injeções Intraperitoneais , Rim/efeitos dos fármacos , Rim/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Subcrônica
6.
Biochem Pharmacol ; 164: 326-335, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31028743

RESUMO

Cancer is a complex disease wherein cells begin to divideabnormally and spread into surrounding tissues. Angiogenesis plays a crucial role in tumor progression as it is required for sustained growth and metastasis, therefore targeting angiogenesis is a promising therapeutic approach for breast cancer management. Salinomycin (SAL) has been reported to exhibit anticancer response on various types of cancer. In the present study, we explored the antiangiogenic and anticancer efficacy of the polyether ionophore SAL in the breast cancer model. It effectively inhibited cell proliferation, invasion, and migration. It also inhibited the expression of pro-angiogenic cell surface marker CD31 in HUVEC, thereby interrupting the endothelial tubulogenesis. It decreased the HIF-1α transcription factor DNA binding activity to HRE sequence in HUVEC and human breast cancer cells. Further, corresponding to our in vitro findings, SAL suppressed neovascularization in the chick chorioallantoic membrane and the Matrigel plug implanted mice model. Bioluminescence and immunofluorescence imaging revealed that SAL treatment in mice inhibits breast cancer growth and tumor angiogenesis. SAL also suppressed the serum VEGFA level in tumor-bearing mice and induced caspase-dependent apoptosis in breast cancer cells. Taken together our findings suggested that SAL inhibits VEGF induced angiogenesis and breast cancer growth via interrupting HIF-1α/VEGF signalling and could be used as a promising antiangiogenic agent for breast cancer treatment.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Progressão da Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Piranos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Mol Pharm ; 13(9): 3247-55, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27463245

RESUMO

Nitazoxanide (NTZ) has moderate mycobactericidal activity and is also an inducer of autophagy in mammalian cells. High-payload (40-50% w/w) inhalable particles containing NTZ alone or in combination with antituberculosis (TB) agents isoniazid (INH) and rifabutin (RFB) were prepared with high incorporation efficiency of 92%. In vitro drug release was corrected for drug degradation during the course of study and revealed first-order controlled release. Particles were efficiently taken up in vitro by macrophages and maintained intracellular drug concentrations at one order of magnitude higher than NTZ in solution for 6 h. Dose-dependent killing of Mtb and restoration of lung and spleen architecture were observed in experimentally infected mice treated with inhalations containing NTZ. Adjunct NTZ with INH and RFB cleared culturable bacteria from the lung and spleen and markedly healed tissue architecture. NTZ can be used in combination with INH-RFB to kill the pathogen and heal the host.


Assuntos
Antituberculosos/uso terapêutico , Macrófagos/efeitos dos fármacos , Tiazóis/uso terapêutico , Tuberculose/tratamento farmacológico , Administração por Inalação , Animais , Antituberculosos/administração & dosagem , Autofagia/efeitos dos fármacos , Linhagem Celular , Humanos , Isoniazida/administração & dosagem , Isoniazida/uso terapêutico , Masculino , Camundongos , Nitrocompostos , Planejamento da Radioterapia Assistida por Computador , Rifabutina/administração & dosagem , Rifabutina/uso terapêutico , Tiazóis/administração & dosagem , Tuberculose/metabolismo
8.
Pharm Res ; 33(8): 1899-912, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27095353

RESUMO

PURPOSE: Mycobacterium tuberculosis (Mtb) inhibits host defense mechanisms, including autophagy. We investigated particles containing rapamycin (RAP) alone or in combination with isoniazid (INH) and rifabutin (RFB) for: targeting lung macrophages on inhalation; inducing autophagy; and killing macrophage-resident Mtb and/or augmenting anti-tuberculosis (TB) drugs. METHODS: PLGA and drugs were spray-dried. Pharmacokinetics, partial biodistribution (LC-MS/MS) and efficacy (colony forming units, qPCR, acid fast staining, histopathology) in mice following dry powder inhalation were evaluated. RESULTS: Aerodynamic diameters of formulations were 0.7-4.7 µm. Inhaled particles reached deep lungs and were phagocytosed by alveolar macrophages, yielding AUC0-48 of 102 compared to 0.1 µg/ml × h obtained with equivalent intravenous dose. RAP particles induced more autophagy in Mtb-infected macrophages than solutions. Inhaled particles containing RAP alone in daily, alternate-day and weekly dosing regimens reduced bacterial burden in lungs and spleens, inducing autophagy and phagosome-lysosome fusion. Inhalation of particles containing RAP with INH and RFB cleared the lungs and spleens of culturable bacteria. CONCLUSIONS: Targeting a potent autophagy-inducing agent to airway and lung macrophages alone is feasible, but not sufficient to eliminate Mtb. Combination of macrophage-targeted inhaled RAP with classical anti-TB drugs contributes to restoring tissue architecture and killing Mtb.


Assuntos
Antituberculosos/administração & dosagem , Autofagia/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Sirolimo/administração & dosagem , Administração por Inalação , Animais , Antituberculosos/síntese química , Antituberculosos/metabolismo , Autofagia/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Humanos , Ácido Láctico/administração & dosagem , Ácido Láctico/síntese química , Ácido Láctico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/síntese química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sirolimo/síntese química , Sirolimo/metabolismo
9.
PLoS One ; 7(12): e51518, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23240037

RESUMO

The vertical transmission of HIV-1 from the mother to fetus is known, but the molecular mechanism regulating this transmission is not fully characterized. The fetus is highly protected by the placenta, which does not permit microbial pathogens to cross the placental barrier. In the present study, a rat model was established to observe the effect of HIV-1 protein Nef on placental barrier. Evans blue dye was used to assay permeability of placental barrier and fourteen day pregnant Sprague Dawley rats were injected intravenously with 2% Evans blue dye along with various concentrations of recombinant Nef. After an hour, animals were sacrificed and dye migration was observed through the assimilation of peripheral blood into fetus. Interestingly, traces of recombinant Nef protein were detected in the embryo as well as amniotic fluid and amniotic membrane along with placenta and uterus. Our study indicates that recombinant HIV-1-Nef protein breaches the placental barrier and allows the migration of Evans blue dye to the growing fetus. Further the concentration of Nef protein in blood is directly proportional to the intensity of dye migration and to the amount of Nef protein detected in uterus, placenta, amniotic membrane, amniotic fluid and embryo. Based on this study, it can be concluded that the HIV-1 Nef protein has a direct effect on breaching of the placental barrier in the model we have established in this study. Our observations will be helpful to understand the molecular mechanisms related to this breach of placental barrier by Nef in humans and may be helpful to identify specific Nef inhibitors.


Assuntos
Infecções por HIV , HIV-1 , Transmissão Vertical de Doenças Infecciosas , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Líquido Amniótico/metabolismo , Líquido Amniótico/virologia , Animais , Modelos Animais de Doenças , Feminino , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Placenta/virologia , Gravidez , Ratos , Ratos Sprague-Dawley , Útero/virologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/análise , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
10.
Cancer Sci ; 102(5): 1059-67, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21276137

RESUMO

Cyclophosphamide (CPA) has efficacy as a breast cancer therapy. However, toxicity to CPA limits its clinical applications. Hence there is a need to develop compounds that may be combined with it to improve the efficacy and overcome toxicity. We showed previously that Resveratrol (RES), a chemopreventive agent, increased the growth inhibitory effect of CPA-treated MCF-7 cells. Here we have explored the molecular basis of 5 mM CPA and 50 µM RES as a combination on cell-cycle progression, apoptosis and oxidative stress in MCF-7 breast cancer cells. Efficacy of the combination was also evaluated in a serum-free tumor explant culture model. The combination elicited enhanced anti-proliferative action coupled with differential expression of cell-cycle, apoptosis and stress factors. Furthermore, co-treatment superiority in histologically validated ER positive breast cancer explants suggests that this combination may be a worthy future clinical anti-neoplastic regimen.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ciclofosfamida/administração & dosagem , Estilbenos/administração & dosagem , Western Blotting , Neoplasias da Mama/patologia , Neoplasias da Mama/ultraestrutura , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Feminino , Humanos , Imunoprecipitação , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Resveratrol , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA