Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(27): e2300621, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524524

RESUMO

The endothelium-derived signalling molecule nitric oxide (NO) in addition to controlling multifarious servo-regulatory functions, suppresses key processes in vascular lesion formation and prevents atherogenesis and other vascular abnormalities. The conversion of NO into cytotoxic and powerful oxidant peroxynitrite (ONOO- ) in a superoxide (O2 .- )-rich environment has emerged as a major reason for reduced NO levels in vascular walls, leading to endothelial dysfunction and cardiovascular complications. So, designing superoxide dismutase (SOD) mimetics that can selectively catalyze the dismutation of O2 .- in the presence of NO, considering their rapid reaction is challenging and is of therapeutic relevance. Herein, the authors report that SOD mimetic cerium vanadate (CeVO4 ) nanozymes effectively regulate the bioavailability of both NO and O2 .- , the two vital constitutive molecules of vascular endothelium, even in the absence of cellular SOD enzyme. The nanozymes optimally modulate the O2 .- level in endothelial cells under oxidative stress conditions and improve endogenously generated NO levels by preventing the formation of ONOO- . Furthermore, nanoparticles exhibit size- and morphology-dependent uptake into the cells and internalize via the clathrin-mediated endocytosis pathway. Intravenous administration of CeVO4 nanoparticles in mice caused no definite organ toxicity and unaltered haematological and biochemical parameters, indicating their biosafety and potential use in biological applications.


Assuntos
Óxido Nítrico , Ácido Peroxinitroso , Humanos , Camundongos , Animais , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Disponibilidade Biológica , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Oxirredução , Endotélio Vascular/metabolismo
2.
Mini Rev Med Chem ; 18(3): 244-275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28302039

RESUMO

Arthritis is marked by joint deterioration that affects articular cartilage and subchondral bone. Though cartilage degradation does the major damage during arthritis, subsequent bone degeneration cannot be neglected. Recent progress in arthritis research has identified the clinical importance of bone erosion in destructive arthritis. Studies have showed the key role played by osteoclasts and receptor activator of nuclear factor kappaB ligand (RANKL) signaling in bone erosion. Cathepsins and tartrate resistant acid phosphatase (TRAP) are considered key enzymatic factors contributing to bone erosion. Further, reactive oxygen species (ROS) formed at the ruffled border of osteoclasts also causes bone resorption and matrix degradation. Besides, severe inflammation during arthritis induces bone erosion by aiding in Ca2+ removal and activating osteoclastogenesis. The inflammatory cytokines and ROS influence osteoclast differentiation by regulating osteoclast-lineage cells or by acting on other cells to regulate the expression of RANKL and osteoprotegerin (OPG). The enhanced production of pro-inflammatory cytokines and ROS in arthritis stimulates tissue injury by means of oxidative damage leading to vital organ damage and synovial and circulatory cell apoptosis. Thus, blocking enzymatic and non-enzymatic factors responsible for bone erosion and inflammation is considered a prime strategy in the management of arthritis. In this review we provide an overview of the mechanisms of bone erosion, inflammation and associated oxidative stress/damage during arthritis perpetuation along with shedding light on potential targets. The article also describes the possible natural therapeutic agents that could prevent bone loss and inflammation, and related secondary complications of arthritis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Artrite Reumatoide/complicações , Produtos Biológicos/química , Humanos
3.
Food Funct ; 5(3): 587-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24500568

RESUMO

Although arthritis is primarily a joint disorder that mainly targets the articular cartilage and subchondral bone, several recent investigations have reported oxidative burst and vital organ damage that are being considered as secondary complications of arthritis. The continuous generation of free radicals like reactive oxygen and nitrogen species is considered as a key culprit in the initiation and propagation of oxidative damage. In addition, activation of T and B cells, macrophages, inflammatory mediators such as TNF-α, IL-1ß and IL-6 aggravates the oxidative damage of the vital organs, particularly the liver. The current piece of work demonstrates oxidative stress in the liver of arthritic rats and its amelioration by the procyanidin-rich tamarind seed extract (TSE). The arthritic liver homogenate, mitochondrial and cytosolic fractions were found with increased levels of oxidative stress markers including free radicals. As a consequence, depletion in the levels of glutathione, total thiols, glutathione peroxidase and reductase was evident. Furthermore, the activities of endogenous antioxidant enzymes like superoxide dismutase, catalase and glutathione-S-transferase were found to be significantly altered. The increased and decreased activity of transaminases respectively in serum and liver, along with histological observations, further confirms the liver damage. Unfortunately, the commonly used drugs like NSAIDs and DMARDs have failed to prevent oxidative damage, rather they were found to be the inducers themselves. Interestingly, TSE supplementation was found to significantly inhibit oxidative burst in the liver and maintain homeostasis. Thus, the study clearly demonstrates the protective efficacy of TSE against arthritis-associated oxidative liver damage, including mitochondrial oxidative burst and its associated secondary complications.


Assuntos
Antioxidantes/administração & dosagem , Artrite/tratamento farmacológico , Fígado/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Sementes/química , Tamarindus/química , Animais , Artrite/metabolismo , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA