Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(2): 88, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305873

RESUMO

The COVID-19 pandemic caused unprecedented damage to humanity, and while vaccines have been developed, they are not fully effective against the SARS-CoV-2 virus. Limited targeted drugs, such as Remdesivir and Paxlovid, are available against the virus. Hence, there is an urgent need to explore and develop new drugs to combat COVID-19. This study focuses on exploring microbial natural products from soil-isolated bacteria Streptomyces sp. strain 196 and RI.24 as a potential source of new targeted drugs against SARS-CoV-2. Molecular docking studies were performed on holoRdRp and nsp13, two key factors responsible for virus replication factor. Our in silico studies, K-252-C aglycone indolocarbazole alkaloid (K252C) and daunorubicin were found to have better binding affinities than the respective control drugs, with K252C exhibiting binding energy of - 9.1 kcal/mol with holoRdRp and - 9.2 kcal/mol with nsp13, and daunorubicin showing binding energy at - 8.1 kcal/mol with holoRdRp and - 9.3 kcal/mol with nsp13. ADMET analysis, MD simulation, and MM/GBSA studies indicated that K252C and daunorubicin have the potential to be developed as targeted drugs against SARS-CoV-2. The study concludes that K252C and daunorubicin are potential lead compounds that might suppress the inhibition of SARS-CoV-2 replication among the tested microbial compounds and could be developed as targeted drugs against COVID-19. In the future, further in vitro studies are required to validate these findings.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Produtos Biológicos/farmacologia , Simulação de Acoplamento Molecular , Pandemias , Daunorrubicina/farmacologia , Inibidores de Proteases
2.
Front Cell Dev Biol ; 11: 1117155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261076

RESUMO

Introduction: Polyaromatic hydrocarbons (PAHs) are considered as redox active environmental toxicants inducing oxidative stress (OS) mediated injury to cells. Oxidative predominance is reported in 30%-80% of idiopathic male infertility (IMI) patients. Hence, this work aims to unravel correlation, if any, between seminal PAH exposome and sperm function in IMI patients through a proteomic approach. Methods: Seminal PAH exposome was analyzed in 43 fertile donors and 60 IMI patients by HPLC and receiver operating characteristic (ROC) curve was applied to find out the cut-off limits. Spermatozoa proteome was analyzed by label free liquid chromatography mass spectroscopy (LC-MS/MS) followed by molecular pathway analysis using bioinformatic tools. Validation of key proteins' expression and protein oxidative modifications were analyzed by western blot. Results and discussion: Of the 16 standards toxic PAH, 13 were detected in semen. Impact of the different PAHs on fertility are Anthracene < benzo (a) pyrene < benzo [b] fluoranthene < Fluoranthene < benzo (a) anthracene

3.
Front Genet ; 14: 1141010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323656

RESUMO

Psoriasis is an immune-mediated inflammatory skin disease typically characterized by erythematous and scaly plaques. It affects 3% of the Newfoundland population while only affecting 1.7% of the general Canadian population. Recent genome-wide association studies (GWAS) in psoriasis have identified more than 63 genetic susceptibility loci that individually have modest effects. Prior studies have shown that a genetic risk score (GRS) combining multiple loci can improve psoriasis disease prediction. However, these prior GRS studies have not fully explored the association of GRS with patient clinical characteristics. In this study, we calculated three types of GRS: one using all known GWAS SNPs (GRS-ALL), one using a subset of SNPs from the HLA region (GRS-HLA), and the last using non-HLA SNPs (GRS-noHLA). We examined the relationship between these GRS and a number of psoriasis features within a well characterized Newfoundland psoriasis cohort. We found that both GRS-ALL and GRS-HLA were significantly associated with early age of psoriasis onset, psoriasis severity, first presentation of psoriasis at the elbow or knee, and the total number of body locations affected, while only GRS-ALL was associated with a positive family history of psoriasis. GRS-noHLA was uniquely associated with genital psoriasis. These findings clarify the relationship of the HLA and non-HLA components of GRS with important clinical features of psoriasis.

4.
Am J Reprod Immunol ; 89(2): e13613, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35998016

RESUMO

PROBLEM: Recurrent pregnancy loss (RPL) is usually evaluated from a women's perspective, however, recent evidence implies involvement of male factors as paternally expressed genes predominate placenta. During fertilization, prior to implantation the immune system purposefully produces early pregnancy factors with potent immunomodulatory properties for adaptation to antigenically dissimilar embryo. Therefore, it is hypothesized that paternal immunological factors play a role in RPL. METHOD OF STUDY: Comparative proteome profiling (label free liquid chromatography mass spectroscopy: LC-MS/MS) of the seminal extracellular vesicles (SEVs), extracellular vesicle free seminal plasma (EVF-SP) and spermatozoa was carried out in semen of RPL patients (n = 21) and fertile donors (n = 21). This was followed by pathway and protein-protein interaction analysis, and validation of key proteins' expression (western blot). RESULTS: A total of 68, 28 and 49 differentially expressed proteins in SEVs, EVF-SP and spermatozoa of RPL patients, respectively, were found to be involved in inflammatory response, immune cell signalling and apoptosis. In SEVs, underexpressed GDF-15 and overexpressed C3 imply distorted maternal immune response to paternal antigens leading to impaired decidualization. Dysregulated TGFß signalling in EVF-SP surmises defective modulation of inflammatory response and induction of immune tolerance to seminal antigens in the female reproductive tract through generation of regulatory T cells. Retained histone variants in spermatozoa construe defective expression of early paternal genes, while underexpressed PTN may inflict defective angiogenesis resulting in expulsion of decidua. CONCLUSIONS: Impaired modulation of immune response and improper placental development due to altered cytokine levels in seminal components may be the contributing paternal factors in RPL.


Assuntos
Aborto Habitual , Proteoma , Humanos , Masculino , Feminino , Gravidez , Proteoma/metabolismo , Cromatografia Líquida , Placenta/metabolismo , Espectrometria de Massas em Tandem , Sêmen , Aborto Habitual/genética , Aborto Habitual/metabolismo
5.
Expert Opin Biol Ther ; 22(12): 1449-1461, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317702

RESUMO

INTRODUCTION: Psoriasis (PSO) and psoriatic arthritis (PSA) represent a large burden of global inflammatory disease, but sustained treatment response and early diagnosis remain challenging. Both conditions arise from complex immune cell dysregulation. Single-cell techniques, including single-cell RNA sequencing (scRNA-seq), have revolutionized our understanding of pathogenesis by illuminating heterogeneous cell populations and their interactions. AREAS COVERED: We discuss the transcriptional profiles and cellular interactions unique to PSO/PSA affecting T cells, myeloid cells, keratinocytes, innate lymphoid cells, and stromal cells. We also review advances, limitations, and future challenges associated with single-cell studies. EXPERT OPINION: Following analyses of 22 single-cell studies, several themes emerged. A small subpopulation of cells can have a large impact on disease pathogenesis. Multiple cell types identified via scRNA-seq play supporting roles in PSO pathogenesis, contrary to the traditional paradigm focusing on IL-23/IL-17 signaling among dendritic cells and T cells. Immune cell states are dynamic, with psoriatic subpopulations aberrantly re-activating and differentiating into inflammatory phenotypes depending on surrounding signaling cues. Comparison of circulating immune cells with resident skin/joint cells has uncovered specific T cell clonotypes associated with the disease. Finally, machine learning models demonstrate great promise in identifying biomarkers to diagnose clinically ambiguous rashes and PSA at earlier stages.


Assuntos
Artrite Psoriásica , Produtos Biológicos , Psoríase , Humanos , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/genética , Imunidade Inata , Linfócitos/metabolismo , Psoríase/diagnóstico , Psoríase/genética
6.
Front Oncol ; 12: 910494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203433

RESUMO

Recent advancements in cancer biology have revealed molecular changes associated with carcinogenesis and chemotherapeutic exposure. The available information is being gainfully utilized to develop therapies targeting specific molecules involved in cancer cell growth, survival, and chemoresistance. Targeted therapies have dramatically increased overall survival (OS) in many cancers. Therefore, developing such targeted therapies against oral squamous cell carcinoma (OSCC) is anticipated to have significant clinical implications. In the current work, we have identified drug-specific sensitivity-related prognostic biomarkers (BOP1, CCNA2, CKS2, PLAU, and SERPINE1) using gene expression, Cox proportional hazards regression, and machine learning in OSCC. Dysregulation of these markers is significantly associated with OS in many cancers. Their elevated expression is related to cellular proliferation and aggressive malignancy in various cancers. Mechanistically, inhibition of these biomarkers should significantly reduce cellular proliferation and metastasis in OSCC and should result in better OS. It is pertinent to note that no effective small-molecule candidate has been identified against these biomarkers to date. Therefore, a comprehensive in silico drug design strategy assimilating homology modeling, extensive molecular dynamics (MD) simulation, and ensemble molecular docking has been applied to identify potential compounds against identified targets, and potential molecules have been identified. We hope that this study will help in deciphering potential genes having roles in chemoresistance and a significant impact on OS. It will also result in the identification of new targeted therapeutics against OSCC.

7.
Front Cell Dev Biol ; 10: 867057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211461

RESUMO

Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.

8.
Front Immunol ; 13: 838636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634297

RESUMO

Ankylosing spondylitis (AS) is an immune-mediated inflammatory disorder that primarily affects the axial skeleton, especially the sacroiliac joints and spine. This results in chronic back pain and, in extreme cases, ankylosis of the spine. Despite its debilitating effects, the pathogenesis of AS remains to be further elucidated. This study used single cell CITE-seq technology to analyze peripheral blood mononuclear cells (PBMCs) in AS and in healthy controls. We identified a number of molecular features associated with AS. CD52 was found to be overexpressed in both RNA and surface protein expression across several cell types in patients with AS. CD16+ monocytes overexpressed TNFSF10 and IL-18Rα in AS, while CD8+ TEM cells and natural killer cells overexpressed genes linked with cytotoxicity, including GZMH, GZMB, and NKG7. Tregs underexpressed CD39 in AS, suggesting reduced functionality. We identified an overrepresented NK cell subset in AS that overexpressed CD16, CD161, and CD38, as well as cytotoxic genes and pathways. Finally, we developed machine learning models derived from CITE-seq data for the classification of AS and achieved an Area Under the Receiver Operating Characteristic (AUROC) curve of > 0.95. In summary, CITE-seq identification of AS-associated genes and surface proteins in specific cell subsets informs our understanding of pathogenesis and potential new therapeutic targets, while providing new approaches for diagnosis via machine learning.


Assuntos
Espondilite Anquilosante , Epitopos , Humanos , Leucócitos Mononucleares/patologia , Aprendizado de Máquina , Espondilite Anquilosante/diagnóstico , Transcriptoma
9.
Front Immunol ; 13: 835760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309349

RESUMO

Early diagnosis of psoriatic arthritis (PSA) is important for successful therapeutic intervention but currently remains challenging due, in part, to the scarcity of non-invasive biomarkers. In this study, we performed single cell profiling of transcriptome and cell surface protein expression to compare the peripheral blood immunocyte populations of individuals with PSA, individuals with cutaneous psoriasis (PSO) alone, and healthy individuals. We identified genes and proteins differentially expressed between PSA, PSO, and healthy subjects across 30 immune cell types and observed that some cell types, as well as specific phenotypic subsets of cells, differed in abundance between these cohorts. Cell type-specific gene and protein expression differences between PSA, PSO, and healthy groups, along with 200 previously published genetic risk factors for PSA, were further used to perform machine learning classification, with the best models achieving AUROC ≥ 0.87 when either classifying subjects among the three groups or specifically distinguishing PSA from PSO. Our findings thus expand the repertoire of gene, protein, and cellular biomarkers relevant to PSA and demonstrate the utility of machine learning-based diagnostics for this disease.


Assuntos
Artrite Psoriásica , Psoríase , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/genética , Biomarcadores , Epitopos , Humanos , Aprendizado de Máquina , Psoríase/diagnóstico , Psoríase/genética , Transcriptoma
10.
J Biomol Struct Dyn ; 40(12): 5606-5622, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33438526

RESUMO

ATAD2 has recently been shown to promote stomach cancer. However, nothing is known about the functional network of ATAD2 in stomach carcinogenesis. This study illustrates the oncogenic potential of ATAD2 and the participation of its ATPase and bromodomain in stomach malignancy. Expression of ATAD2 in stomach cancer is analyzed by in silico and in vitro techniques including western blot and immunofluorescence microscopy of stomach cancer cells (SCCs) and tissues. The oncogenic potential of ATAD2 is examined thoroughly using genetic alterations, driver gene prediction, survival analysis, identification of interacting partners, and analysis of canonical pathways. To understand the protein-protein interactions (PPI) at residue level, molecular docking and molecular dynamics simulations (1200 ns) are performed. Enhanced expression of ATAD2 is observed in H. pylori-infected SCCs, patient biopsy tissues, and all stages and grades of stomach cancer. High expression of ATAD2 is found to be negatively correlated with the survival of stomach cancer patients. ATAD2 is a cancer driver gene with 37 mutational sites and a predictable factor for stomach cancer prognosis with high accuracy. The top canonical pathways of ATAD2 indicate its participation in stomach malignancy. The ATAD2-PPI in stomach cancer identify top-ranked partners; ESR1, SUMO2, SPTN2, and MYC show preference for the bromodomain whereas NCOA3 and HDA11 have preference for the ATPase domain of ATAD2. The oncogenic characterization of ATAD2 provides strong evidence to consider ATAD2 as a stomach cancer biomarker. These studies offer an insight for the first time into the ATAD2-PPI interface presenting a novel target for cancer therapeutics. Communicated by Ramaswamy H. Sarma.


Assuntos
Adenosina Trifosfatases , Neoplasias Gástricas , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/química , Carcinogênese/genética , Proteínas de Ligação a DNA/química , Humanos , Simulação de Acoplamento Molecular , Neoplasias Gástricas/genética
11.
Toxicol In Vitro ; 79: 105293, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34883246

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis and remains highly aggressive despite current advancements in therapies. Chemoresistance and high metastatic nature of PDAC is attributed to a small subset of stem-like cells within the tumor known as Cancer Stem Cells (CSCs). Here, we developed a strategy for targeting pancreatic CSCs through forceful induction of mesenchymal-to-epithelial transition driven by encapsulating a phytochemical Nimbolide in nanoparticles. Binding of Nimbolide with the key regulator proteins of CSCs were studied through molecular docking and molecular dynamic simulation studies, which revealed that it binds to AKT and mTOR with high affinity. Further, in vitro studies revealed that Nim NPs are capable of inducing forceful mesenchymal-to-epithelial transition of pancreatospheres that leads to loss of multidrug resistance and self-renewal properties of pancreatospheres. Our study gives a proof of concept that encapsulation of Nim in PLGA nanoparticles increases its therapeutic effect on pancreatospheres. Further, binding of Nim to AKT and mTOR negatively regulates their activity that ultimately leads to mesenchymal-to-epithelial transition of pancreatic CSCs.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Limoninas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Limoninas/metabolismo , Simulação de Acoplamento Molecular , Nanopartículas/administração & dosagem , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
13.
Comput Struct Biotechnol J ; 19: 1998-2017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841751

RESUMO

The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.

14.
Br J Cancer ; 124(12): 2004-2016, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33762722

RESUMO

BACKGROUND: Chemoresistance is one of the major factors for treatment failure in OSCC. Identifying key resistance triggering molecules will be useful strategy for developing novel treatment methods. METHODS: To identify the causative factors of chemoresistance, we performed RNA sequencing and global proteomic profiling of human OSCC lines presenting with sensitive, early and late cisplatin-resistance patterns. RESULTS: From the common set of dysregulated genes from both the analysis, RRBP1 was identified to be upregulated in both early and late cisplatin-resistant cells with respect to the sensitive counterpart. Analysis of OSCC patient sample indicates that RRBP1 expression is upregulated in chemotherapy-non-responder tumours as compared to chemotherapy-responder tumours. Genetic (knockout) or pharmacological (Radezolid, represses expression of RRBP1) inhibition of RRBP1 restores cisplatin-mediated cell death in chemo-resistant OSCC. Mechanistically, RRBP1 regulates Yes-associated protein1 (YAP1), a key protein in the Hippo pathway to induce chemoresistance. The PDC xenograft data suggests that knockout of RRBP1 induces cisplatin-mediated cell death and facilitates a significant reduction of tumour burden. CONCLUSION: Overall, our data suggests that (I) RRBP1 is a major driver of cisplatin-resistance in OSCC, (II) RRBP1 regulates YAP1 expression to mediate cisplatin-resistance, (III) Radezolid represses RRBP1 expression and (IV) targeting RRBP1 reverses cisplatin-induced chemoresistance in advanced OSCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Proteínas de Transporte/fisiologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Bucais/tratamento farmacológico , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Células HEK293 , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Reprod Dev ; 88(1): 96-112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33345401

RESUMO

Recent evidence entail paternal factors as plausible contributors in spontaneous recurrent pregnancy loss (RPL). Seminal extracellular vesicles secreted from cells of male reproductive tract carry regulatory proteins and RNAs. They are proposed to regulate sperm maturation and function while their fusion to endometrial stromal cells helps in decidualization. Nevertheless, the mechanism(s) involved in these processes are poorly understood. This study aims at elucidating the molecular basis of paternal contribution by comparative proteomics (label-free LC-MS/MS) of isolated seminal extracellular vesicles from fertile men and partners of patients with RPL (n = 21 per group). Bioinformatics analysis revealed the identified differentially expressed proteins to be involved in DNA replication, recombination and repair, gene expression, cellular assembly and organization, cell death, and survival. Major disease pathways affected were identified as developmental, hereditary, and immunological disorders. Of the three identified hub genes regulating the above disease pathways, two (HNRNPC and HNRNPU) are overexpressed while RUVBL1 is underexpressed along with over expression of HIST1H1C, DDX1, surmising defective chromatin packaging, and histone removal in spermatozoa resulting in improper expression in paternal genes thereby leading to abnormal embryo development. Besides, alteration in GSTP1 expression points oxidative predominance in RPL group. Differential expression of C3, C4a/C4b, CFB, and GDF 15 may be involved in altered maternal immune response to paternal antigens resulting in impaired decidualization.


Assuntos
Aborto Habitual/genética , Aborto Habitual/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Proteoma , Glândulas Seminais/metabolismo , Transcriptoma , Estudos de Casos e Controles , Desenvolvimento Embrionário/genética , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Gravidez , Mapas de Interação de Proteínas/genética , Proteômica/métodos , Espermatozoides/metabolismo
16.
Front Microbiol ; 11: 594928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329480

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has emerged as a global pandemic worldwide. In this study, we used ARTIC primers-based amplicon sequencing to profile 225 SARS-CoV-2 genomes from India. Phylogenetic analysis of 202 high-quality assemblies identified the presence of all the five reported clades 19A, 19B, 20A, 20B, and 20C in the population. The analyses revealed Europe and Southeast Asia as two major routes for introduction of the disease in India followed by local transmission. Interestingly, the19B clade was found to be more prevalent in our sequenced genomes (17%) compared to other genomes reported so far from India. Haplotype network analysis showed evolution of 19A and 19B clades in parallel from predominantly Gujarat state in India, suggesting it to be one of the major routes of disease transmission in India during the months of March and April, whereas 20B and 20C appeared to evolve from 20A. At the same time, 20A and 20B clades depicted prevalence of four common mutations 241 C > T in 5' UTR, P4715L, F942F along with D614G in the Spike protein. D614G mutation has been reported to increase virus shedding and infectivity. Our molecular modeling and docking analysis identified that D614G mutation resulted in enhanced affinity of Spike S1-S2 hinge region with TMPRSS2 protease, possibly the reason for increased shedding of S1 domain in G614 as compared to D614. Moreover, we also observed an increased concordance of G614 mutation with the viral load, as evident from decreased Ct value of Spike and the ORF1ab gene.

17.
PeerJ ; 8: e9656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024622

RESUMO

Machine learning techniques are increasingly used in the analysis of high throughput genome sequencing data to better understand the disease process and design of therapeutic modalities. In the current study, we have applied state of the art machine learning (ML) algorithms (Random Forest (RF), Support Vector Machine Radial Kernel (svmR), Adaptive Boost (AdaBoost), averaged Neural Network (avNNet), and Gradient Boosting Machine (GBM)) to stratify the HNSCC patients in early and late clinical stages (TNM) and to predict the risk using miRNAs expression profiles. A six miRNA signature was identified that can stratify patients in the early and late stages. The mean accuracy, sensitivity, specificity, and area under the curve (AUC) was found to be 0.84, 0.87, 0.78, and 0.82, respectively indicating the robust performance of the generated model. The prognostic signature of eight miRNAs was identified using LASSO (least absolute shrinkage and selection operator) penalized regression. These miRNAs were found to be significantly associated with overall survival of the patients. The pathway and functional enrichment analysis of the identified biomarkers revealed their involvement in important cancer pathways such as GP6 signalling, Wnt signalling, p53 signalling, granulocyte adhesion, and dipedesis. To the best of our knowledge, this is the first such study and we hope that these signature miRNAs will be useful for the risk stratification of patients and the design of therapeutic modalities.

18.
Antioxid Redox Signal ; 32(8): 504-521, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31691576

RESUMO

Aims: To understand the molecular pathways involved in oxidative stress (OS)-mediated sperm dysfunction against a hypoxic and hyperthermic microenvironment backdrop of varicocele through a proteomic approach. Results: Protein selection (261) based on their role in redox homeostasis and/or oxidative/hyperthermic/hypoxic stress response from the sperm proteome data set of unilateral varicocele (UV) in comparison with fertile control displayed 85 to be differentially expressed. Upregulation of cellular oxidant detoxification and glutathione and reduced nicotinamide adenine dinucleotide (NADH) metabolism accompanied with downregulation of protein folding, energy metabolism, and heat stress responses were observed in the UV group. Ingenuity pathway analysis (IPA) predicted suppression of oxidative phosphorylation (OXPHOS) (validated by Western blotting [WB]) along with augmentation in OS and mitochondrial dysfunction in UV. The top affected networks indicated by IPA involved heat shock proteins (HSPs: HSPA2 and HSP90B1). Their expression profile was corroborated by immunocytochemistry and WB. Hypoxia-inducible factor 1A as an upstream regulator of HSPs was predicted by MetaCore. Occurrence of reductive stress in UV spermatozoa was corroborated by thiol redox status. Innovation: This is the first evidence of a novel pathway showing aberrant redox homeostasis against chronic hypoxic insult in varicocele leading to sperm dysfunction. Conclusions: Upregulation of antioxidant system and dysfunctional OXPHOS would have shifted the redox balance of biological redox couples (GSH/GSSG, NAD+/NADH, and NADP+/NADPH) to a more reducing state leading to reductive stress. Chronic reductive stress-induced OS may be involved in sperm dysfunction in infertile men with UV, where the role of HSPs cannot be ignored. Intervention with antioxidant therapy warrants proper prior investigation.


Assuntos
Infertilidade Masculina/metabolismo , Proteoma/metabolismo , Espermatozoides/metabolismo , Regulação para Cima/fisiologia , Varicocele/metabolismo , Metabolismo Energético/fisiologia , Humanos , Masculino , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia , Proteômica , Motilidade dos Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA