Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 17(6): e3000281, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31185007

RESUMO

Rhino- and enteroviruses are important human pathogens, against which no antivirals are available. The best-studied inhibitors are "capsid binders" that fit in a hydrophobic pocket of the viral capsid. Employing a new class of entero-/rhinovirus inhibitors and by means of cryo-electron microscopy (EM), followed by resistance selection and reverse genetics, we discovered a hitherto unknown druggable pocket that is formed by viral proteins VP1 and VP3 and that is conserved across entero-/rhinovirus species. We propose that these inhibitors stabilize a key region of the virion, thereby preventing the conformational expansion needed for viral RNA release. A medicinal chemistry effort resulted in the identification of analogues targeting this pocket with broad-spectrum activity against Coxsackieviruses B (CVBs) and compounds with activity against enteroviruses (EV) of groups C and D, and even rhinoviruses (RV). Our findings provide novel insights in the biology of the entry of entero-/rhinoviruses and open new avenues for the design of broad-spectrum antivirals against these pathogens.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Capsídeo/efeitos dos fármacos , Capsídeo/ultraestrutura , Sequência de Aminoácidos/genética , Aminoácidos/genética , Antígenos Virais , Antivirais , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Desenvolvimento de Medicamentos/métodos , Enterovirus/efeitos dos fármacos , Enterovirus/ultraestrutura , Humanos , Modelos Moleculares , Conformação Molecular , Rhinovirus/efeitos dos fármacos , Rhinovirus/ultraestrutura , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Vírion/genética
2.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 4): 467-471, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28435699

RESUMO

The title compounds, C12H12ClN5OS, (I), and C12H12ClN5OS, (II), are 2-[(di-amino-pyrimidin-2-yl)sulfan-yl]acetamides. Compound (II), crystallizes with two independent mol-ecules (A and B) in the asymmetric unit. In each of the mol-ecules, in both (I) and (II), an intra-molecular N-H⋯N hydrogen bond forms an S(7) ring motif. The pyrimidine ring is inclined to the benzene ring by 42.25 (14)° in (I), and by 59.70 (16) and 62.18 (15)° in mol-ecules A and B, respectively, of compound (II). In the crystal of (I), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via bifurcated N-H⋯O and C-H⋯O hydrogen bonds, forming corrugated layers parallel to the ac plane. In the crystal of (II), the A mol-ecules are linked through N-H⋯O and N-H⋯Cl hydrogen bonds, forming layers parallel to (100). The B mol-ecules are also linked by N-H⋯O and N-H⋯Cl hydrogen bonds, also forming layers parallel to (100). The parallel layers of A and B mol-ecules are linked via N-H⋯N hydrogen bonds, forming a three-dimensional structure.

3.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 2): 306-309, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28217364

RESUMO

The title compounds, C16H15N5OS, (I), and C12H12FN5OS, (II), are [(di-amino-pyrimidine)-sulfan-yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra-molecular N-H⋯N hydrogen bond and a short C-H⋯O contact. In the crystals of (I) and (II), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with R22(8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N-H⋯(O,O) and C-H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N-H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C-H⋯F hydrogen bonds, forming a three-dimensional architecture.

4.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 8): o850, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25249901

RESUMO

In the title compound, C13H15NOS, the plane of the pyrimidine ring makes a dihedral angle of 54.73 (9)° with that of the o-tolyl ring. The mol-ecule adopts an extended conformation, which is evident from the C-C(=O)-N-Car (ar = aromatic) torsion angle of 178.42 (15)°. In the crystal, mol-ecules are linked via pairs of N-H⋯N hydrogen bonds, forming inversion dimers with an R (2) 2(8) ring motif. The dimers are linked by N-H⋯O and C-H⋯O hydrogen bonds, with the O atom accepting three such interactions, forming sheets parallel to (100).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA