Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(8): 824-838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159439

RESUMO

The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Arábia Saudita , Exobiologia/métodos , Genoma Bacteriano/genética , Marte , Bactérias/genética , Bactérias/isolamento & purificação , Filogenia
2.
J R Soc Interface ; 15(142)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29792307

RESUMO

Chancroid is a sexually transmitted infection (STI) caused by the Gram-negative bacterium Haemophilus ducreyi The control of chancroid is difficult and the only current available treatment is antibiotic therapy; however, antibiotic resistance has been reported in endemic areas. Owing to recent outbreaks of STIs worldwide, it is important to keep searching for new treatment strategies and preventive measures. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 28 strains of H. ducreyi We identified 847 non-host homologous proteins, being 332 exposed/secreted/membrane and 515 cytoplasmic proteins. We also checked their essentiality, functionality and virulence. Altogether, we predicted 13 candidate vaccine targets and three drug targets, where two vaccines (A01_1275, ABC transporter substrate-binding protein; and A01_0690, Probable transmembrane protein) and three drug targets (A01_0698, Purine nucleoside phosphorylase; A01_0702, Transcription termination factor; and A01_0677, Fructose-bisphosphate aldolase class II) are harboured by pathogenicity islands. Finally, we applied a molecular docking approach to analyse each drug target and selected ZINC77257029, ZINC43552589 and ZINC67912117 as promising molecules with favourable interactions with the target active site residues. Altogether, the targets identified here may be used in future strategies to control chancroid worldwide.


Assuntos
Proteínas de Bactérias , Cancroide , Genoma Bacteriano , Ilhas Genômicas , Vacinas Anti-Haemophilus , Haemophilus ducreyi , Fatores de Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Cancroide/genética , Cancroide/imunologia , Cancroide/prevenção & controle , Vacinas Anti-Haemophilus/genética , Vacinas Anti-Haemophilus/imunologia , Vacinas Anti-Haemophilus/metabolismo , Haemophilus ducreyi/genética , Haemophilus ducreyi/imunologia , Haemophilus ducreyi/metabolismo , Haemophilus ducreyi/patogenicidade , Humanos , Vacinologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
3.
Int J Mol Sci ; 18(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216574

RESUMO

Sexually transmitted infections (STIs) are caused by a wide variety of bacteria, viruses, and parasites that are transmitted from one person to another primarily by vaginal, anal, or oral sexual contact. Syphilis is a serious disease caused by a sexually transmitted infection. Syphilis is caused by the bacterium Treponema pallidum subspecies pallidum. Treponema pallidum (T. pallidum) is a motile, gram-negative spirochete, which can be transmitted both sexually and from mother to child, and can invade virtually any organ or structure in the human body. The current worldwide prevalence of syphilis emphasizes the need for continued preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine targets and putative drugs against syphilis disease using reverse vaccinology and subtractive genomics. We compared 13 strains of T. pallidum using T. pallidum Nichols as the reference genome. Using an in silicoapproach, four pathogenic islands were detected in the genome of T. pallidum Nichols. We identified 15 putative antigenic proteins and sixdrug targets through reverse vaccinology and subtractive genomics, respectively, which can be used as candidate therapeutic targets in the future.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Simulação por Computador , Mapeamento de Epitopos , Sífilis/prevenção & controle , Treponema pallidum/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Vacinas Bacterianas/genética , Biologia Computacional/métodos , Mapeamento de Epitopos/métodos , Genoma Bacteriano , Ilhas Genômicas , Genômica/métodos , Modelos Moleculares , Relação Estrutura-Atividade , Treponema pallidum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA