Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 4): 114750, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370821

RESUMO

Heavy metals represent a considerable threat, and the current study deals with synthesizing a novel MOF nanocomposite by intercalating graphene oxide (GO) and linker UiO-66-NDC. It was shown that UiO-66-NDC/GO had enhanced the removal efficiency of Pb (II) ions at pH 6. The adsorption kinetics data followed the PSO (Type 2) representing chemisorption. Adsorption data were also fitted with three different isotherms, namely Temkin, Freundlich, & Langmuir, and the Temkin model exhibited the best correlation (R2 0.99), representing the chemisorption nature of the adsorption process. The maximum adsorption capacity (qmax) of Pb (II) ions using Langmuir was found to be 254.45 mg/g (298 K). The Pb (II) adsorption process was confirmed to be exothermic and spontaneous as the thermodynamic parameters H° and G° were determined to have negative values. MOF nanocomposite also represents significant reusability for up to four regeneration cycles using 0.01 M HCl; for the next four, it works quite efficiently after regeneration. Meanwhile, the simulation findings confirm the superior dynamic stability (∼08 times) of the MOF nanocomposite as compared to the GO system. The removal of Pb (II) from simulated wastewater samples using a super nano-adsorbent using a MOF nanocomposite is described here for the first time.


Assuntos
Chumbo , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Água , Íons , Cinética , Concentração de Íons de Hidrogênio
2.
Chemosphere ; 307(Pt 2): 135804, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35932914

RESUMO

Chromium is detected in most ecosystems due to the increased anthropogenic activities in addition to that developed from natural pollution. Chromium contamination in the food chain results due to its persistent and non-degradable nature. The release of chromium in the ecosystem accretes and thereafter impacts different life forms, including humans, aquatic and terrestrial organisms. Leaching of chromium into the ground and surface water triggers several health ailments, such as dermatitis, eczematous skin, allergic reactions, mucous and skin membrane ulcerations, allergic asthmatic reactions, bronchial carcinoma and gastroenteritis. Physiological and biological treatments for the removal of chromium have been discussed in depth in the present communication. Adsorption and biological treatment methods are proven to be alternatives to chemical removal techniques in terms of cost-effectiveness and low sludge formation. Chromium sensing is an alternative approach for regular monitoring of chromium in different water bodies. This review intended to explore different classes of sensors for chromium monitoring. However, the spectrochemical methods are more sensitive in chromium ions sensing than electrochemical methods. Future study should focus on miniaturization for portability and on-site measurements without requiring a large instrument provides a good aspect for future research.


Assuntos
Cromo , Poluentes Químicos da Água , Cromo/análise , Ecossistema , Humanos , Esgotos , Água , Poluentes Químicos da Água/análise
3.
Environ Res ; 203: 111891, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419468

RESUMO

Metal-based adsorbents are limited for hexavalent chromium [Cr(VI)] adsorption from aqueous solutions because of their low adsorption capacities and slow adsorption kinetics. In the present study, decorated zinc oxide (ZnO) nanoparticles (NPs) on graphene oxide (GO) nanoparticles were synthesized via the solvothermal process. The deposition of ZnO NPs on graphene oxide for the nanohybrid (ZnO-GO) improves Cr(VI) mobility in the nanocomposite or nanohybrid, thereby improving the Cr(VI) adsorption kinetics and removal capacity. Surface deposition of ZnO on graphene oxide was characterized through Fourie Transform Infra-red (FTIR), UV-Visible, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) techniques. These characterizations suggest the formation of ZnO-GO nanocomposite with a specific area of 32.95 m2/g and pore volume of 0.058 cm2/g. Batch adsorption analysis was carried to evaluate the influence of operational parameters, equilibrium isotherm, adsorption kinetics and thermodynamics. The removal efficiency of Cr(VI) increases with increasing time and adsorbent dosage. FTIR, FESEM and BET analysis before and after the adsorption studies suggest the obvious changes in the surface functionalization and morphology of the ZnO-GO nanocomposites. The removal efficiency increases from high-acidic to neutral pH and continues to decrease under alkaline conditions as well. Mathematical modeling validates that the adsorption follows Langmuir isotherm and fits well with the pseudo 2nd order kinetics (Type 5) model, indicating a homogeneous adsorption process. The thermodynamics study reveals that Cr(VI) adsorption on ZnO-GO is spontaneous, endothermic, and entropy-driven. A negative value of Gibb's Free Energy represents the thermodynamic spontaneity and feasibility of the sorption process. To the best of our knowledge, this is the first study of Cr(VI) removal from aqueous solution using this hybrid nanocomposite at near-neutral pH. The synthesized nanocomposites prove to be excellent candidates for Cr(VI) removal from water bodies and natural wastewater systems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Óxido de Zinco , Adsorção , Cromo/análise , Grafite , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise
4.
Chemosphere ; 290: 133169, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890615

RESUMO

With millions of tonnes of plastic pollution generated every year, small-sized plastic particles, including micro- and nanoplastics, end up in freshwater systems. Due to the very small size and very large specific surface area of nanoplastics, they are known to be persistent and toxic in our environment. These particles are also known to react with other water-borne contaminants and cause acute toxicity in organisms. Nanoplastics are prone to biomagnification and can be transported to humans through various pathways. This study aims to contribute towards understanding the behaviour of nanoplastics in our environment, specifically through identification of various sources, detection techniques, toxicity estimation, health risk in humans, environmental fate, recovery and reuse, and future challenges and limitations. Detailed review on the toxic effects of nanoplastics on various organisms and their degradation rates in soil and water matrices are provided. The suitability of small- and large-scale separation techniques for the removal of nanoplastics in wastewater treatment plants is also discussed. Current challenges and future perspectives in understanding the fate and transport of nanoplastics in the environment are also discussed. Research gaps, including the development of quantification techniques, estimation of degradation mechanisms, transport in marine ecosystems, and development of sensors to examine nanoplastics in the environment, are explored. Finally, we can limit the release of nanoplastics to the environment through reduction, reuse and recycling (3 Rs) of bulk plastic products.


Assuntos
Plásticos , Poluentes Químicos da Água , Ecossistema , Água Doce , Humanos , Plásticos/toxicidade , Medição de Risco , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA