Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10559-10572, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564642

RESUMO

TiO2 thin films are often used as protective layers on semiconductors for applications in photovoltaics, molecule-semiconductor hybrid photoelectrodes, and more. Experiments reported here show that TiO2 thin films on silicon are electrochemically and photoelectrochemically reduced in buffered acetonitrile at potentials relevant to photoelectrocatalysis of CO2 reduction, N2 reduction, and H2 evolution. On both n-type Si and irradiated p-type Si, TiO2 reduction is proton-coupled with a 1e-:1H+ stoichiometry, as demonstrated by the Nernstian dependence of the Ti4+/3+ E1/2 on the buffer pKa. Experiments were conducted with and without illumination, and a photovoltage of ∼0.6 V was observed across 20 orders of magnitude in proton activity. The 4 nm films are almost stoichiometrically reduced under mild conditions. The reduced films catalytically transfer protons and electrons to hydrogen atom acceptors, based on cyclic voltammogram, bulk electrolysis, and other mechanistic evidence. TiO2/Si thus has the potential to photoelectrochemically generate high-energy H atom carriers. Characterization of the TiO2 films after reduction reveals restructuring with the formation of islands, rendering TiO2 films as a potentially poor choice as protecting films or catalyst supports under reducing and protic conditions. Overall, this work demonstrates that atomic layer deposition TiO2 films on silicon photoelectrodes undergo both chemical and morphological changes upon application of potentials only modestly negative of RHE in these media. While the results should serve as a cautionary tale for researchers aiming to immobilize molecular monolayers on "protective" metal oxides, the robust proton-coupled electron transfer reactivity of the films introduces opportunities for the photoelectrochemical generation of reactive charge-carrying mediators.

2.
Small ; 20(32): e2400679, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488771

RESUMO

Chalcogel represents a unique class of meso- to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion-exchangeable amorphous chalcogel using a nominal composition of K2CoMo2S10 (KCMS) at room temperature is reported. Synchrotron X-ray pair distribution function (PDF), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+ 2 and Mo4+ 3 clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ ions. The ionically bound K+ ions remain in the percolating pores of the Co-Mo-S covalent network. XANES of Co K-edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion-exchange properties with UO2 2+ ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO2 2+] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo-cationic species by integrating a synergy of surface sorption and ion-exchange.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA