Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7396, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978297

RESUMO

Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials.

2.
Nat Commun ; 12(1): 7070, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862386

RESUMO

The metal-insulator transition (MIT), a fascinating phenomenon occurring in some strongly correlated materials, is of central interest in modern condensed-matter physics. Controlling the MIT by external stimuli is a key technological goal for applications in future electronic devices. However, the standard control by means of the field effect, which works extremely well for semiconductor transistors, faces severe difficulties when applied to the MIT. Hence, a radically different approach is needed. Here, we report an MIT induced by resonant tunneling (RT) in double quantum well (QW) structures of strongly correlated oxides. In our structures, two layers of the strongly correlated conductive oxide SrVO3 (SVO) sandwich a barrier layer of the band insulator SrTiO3. The top QW is a marginal Mott-insulating SVO layer, while the bottom QW is a metallic SVO layer. Angle-resolved photoemission spectroscopy experiments reveal that the top QW layer becomes metallized when the thickness of the tunneling barrier layer is reduced. An analysis based on band structure calculations indicates that RT between the quantized states of the double QW induces the MIT. Our work opens avenues for realizing the Mott-transistor based on the wave-function engineering of strongly correlated electrons.

3.
Sci Rep ; 10(1): 22109, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335175

RESUMO

Ti2O3 exhibits unique metal-insulator transition (MIT) at ~ 450 K over a wide temperature range of ~ 150 K. The close relationship between MIT and crystal deformation has been proposed. However, as physical properties are governed by the thermodynamic equilibrium in bulk systems, conducting experimental studies under different lattice deformations remains challenging. Epitaxial thin films can offer high flexibility to accommodate adaptive crystal lattices and provide efficient platforms for investigating the MIT. In this study, we report the synthesis of corundum-type Ti2O3 films on various growth temperatures. We found that the metallic ground states appeared in the films grown at low temperatures. The electronic ground states were further investigated by the electronic-structure calculations. Results suggest that the electrical properties of Ti2O3 films were governed by the c/a ratio of the crystal structure, and the absence of the MIT was attributed to the lattice deformation characterized by an elongated c lattice constant.

4.
Nat Commun ; 11(1): 2466, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424170

RESUMO

Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using their dissipation-less nature and spin-momentum locking. Here we introduce a transition-metal dichalcogenide VTe2, that hosts a charge density wave (CDW) coupled with the band inversion involving V3d and Te5p orbitals. Spin- and angle-resolved photoemission spectroscopy with first-principles calculations reveal the huge anisotropic modification of the bulk electronic structure by the CDW formation, accompanying the selective disappearance of Dirac-type spin-polarized topological surface states that exist in the normal state. Thorough three dimensional investigation of bulk states indicates that the corresponding band inversion at the Brillouin zone boundary dissolves upon the CDW formation, by transforming into anomalous flat bands. Our finding provides a new insight to the topological manipulation of matters by utilizing CDWs' flexible characters to external stimuli.

5.
Phys Rev Lett ; 124(13): 136404, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302163

RESUMO

The chiral crystal is characterized by a lack of mirror symmetry and inversion center, resulting in the inequivalent right- and left-handed structures. In the noncentrosymmetric crystal structure, the spin and momentum of electrons are expected to be locked in the reciprocal space with the help of the spin-orbit interaction. To reveal the spin textures of chiral crystals, we investigate the spin and electronic structure in a p-type semiconductor, elemental tellurium, with the simplest chiral structure by using spin- and angle-resolved photoemission spectroscopy. Our data demonstrate that the highest valence band crossing the Fermi level has a spin component parallel to the electron momentum around the Brillouin zone corners. Significantly, we have also confirmed that the spin polarization is reversed in the crystal with the opposite chirality. The results indicate that the spin textures of the right- and left-handed chiral crystals are hedgehoglike, leading to unconventional magnetoelectric effects and nonreciprocal phenomena.

6.
Nanoscale Res Lett ; 15(1): 42, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065313

RESUMO

Sm-doped CeO2-δ (Ce0.9Sm0.1O2-δ; SDC) thin films were prepared on Al2O3 (0001) substrates by radio frequency magnetron sputtering. The prepared thin films were preferentially grown along the [111] direction, with the spacing of the (111) plane (d111) expanded by 2.6% to compensate for a lattice mismatch against the substrate. The wet-annealed SDC thin film, with the reduced d111 value, exhibited surface protonic conduction in the low-temperature region below 100 °C. The O1s photoemission spectrum exhibits H2O and OH- peaks on the SDC surface. These results indicate the presence of physisorbed water layers and the generation of protons on the SDC (111) surface with oxygen vacancies. The protons generated on the SDC surface were conducted through a physisorbed water layer by the Grotthuss mechanism.

7.
Phys Rev Lett ; 124(4): 047002, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058775

RESUMO

GeTe is a chemically simple IV-VI semiconductor which bears a rich plethora of different physical properties induced by doping and external stimuli. Here, we report a superconductor-semiconductor-superconductor transition controlled by finely-tuned In doping. Our results reveal the existence of a critical doping concentration x_{c}=0.12 in Ge_{1-x}In_{x}Te, where various properties, including structure, resistivity, charge carrier type, and the density of states, take either an extremum or change their character. At the same time, we find indications of a change in the In-valence state from In^{3+} to In^{1+} with increasing x by core-level photoemission spectroscopy, suggesting that this system is a new promising playground to probe valence fluctuations and their possible impact on structural, electronic, and thermodynamic properties of their host.

8.
Phys Rev Lett ; 120(22): 223902, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906133

RESUMO

Nonlinear optical frequency conversion has been challenged to move down to the extreme ultraviolet and x-ray region. However, the extremely low signals have allowed researchers to only perform transmission experiments of the gas phase or ultrathin films. Here, we report second harmonic generation (SHG) of the reflected beam of a soft x-ray free-electron laser from a solid, which is enhanced by the resonant effect. The observation revealed that the double resonance condition can be met by absorption edges for transition metal oxides in the soft x-ray range, and this suggests that the resonant SHG technique can be applicable to a wide range of materials. We discuss the possibility of element-selective SHG spectroscopy measurements in the soft x-ray range.

9.
Nat Mater ; 16(11): 1090-1095, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967918

RESUMO

Weyl fermions have been observed as three-dimensional, gapless topological excitations in weakly correlated, inversion-symmetry-breaking semimetals. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical. Here, we report experimental evidence for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature. Detailed comparison between angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Magnetotransport measurements provide strong evidence for the chiral anomaly of Weyl fermions-namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. Since weak magnetic fields (approximately 10 mT) are adequate to control the distribution of Weyl points and the large fictitious fields (equivalent to approximately a few hundred T) produced by them in momentum space, our discovery lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems such as Mn3Sn.

10.
Sci Rep ; 7(1): 9516, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842643

RESUMO

The fascinating interfacial transport properties at the LaAlO3/SrTiO3 heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO3 at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO3/SrTiO3 (001) heterointerface using soft and hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO3 reveals that a significant potential drop on the SrTiO3 side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion.

11.
J Phys Condens Matter ; 28(43): 436005, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27603328

RESUMO

We report epitaxial structures and physical properties of double-perovskite Sr2CoRuO6 films grown using pulsed-laser deposition. Samples with a degree of Co/Ru order of 2-73% were obtained by changing growth temperature. X-ray absorption spectroscopy (XAS) on the highest ordered sample revealed that Co ions were trivalent with a high-spin configuration and Ru ions were pentavalent. We found large differences in magnetization and resistivity between the highest and lowest ordered samples as well as the absence of strong magnetism and metallicity, which are common characteristics of SrCoO3 and SrRuO3. Using resonant photoemission spectroscopy and XAS, dominant d-orbital components at the top of the occupied state (the bottom of the unoccupied state) were identified to be Ru 4d t 2g (Co 3d and Ru 4d t 2g ). These results suggest that the ground state of double-perovskite Sr2CoRuO6 is a ferrimagnetic insulator.

12.
Phys Rev Lett ; 117(5): 056403, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517783

RESUMO

We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd_{2}Ir_{2}O_{7} through its magnetic metal-insulator transition. Our data reveal that metallic Nd_{2}Ir_{2}O_{7} has a quadratic band, touching the Fermi level at the Γ point, similar to that of Pr_{2}Ir_{2}O_{7}. The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however, with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a nondispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition.

13.
Nat Commun ; 7: 10567, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26843063

RESUMO

In the hole-doped cuprates, a small number of carriers suppresses antiferromagnetism and induces superconductivity. In the electron-doped cuprates, on the other hand, superconductivity appears only in a narrow window of high-doped Ce concentration after reduction annealing, and strong antiferromagnetic correlation persists in the superconducting phase. Recently, Pr(1.3-x)La0.7Ce(x)CuO4 (PLCCO) bulk single crystals annealed by a protect annealing method showed a high critical temperature of around 27 K for small Ce content down to 0.05. Here, by angle-resolved photoemission spectroscopy measurements of PLCCO crystals, we observed a sharp quasi-particle peak on the entire Fermi surface without signature of an antiferromagnetic pseudogap unlike all the previous work, indicating a dramatic reduction of antiferromagnetic correlation length and/or of magnetic moments. The superconducting state was found to extend over a wide electron concentration range. The present results fundamentally challenge the long-standing picture on the electronic structure in the electron-doped regime.

14.
Nat Commun ; 6: 10042, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26640114

RESUMO

Strong spin-orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin-orbit and strong electron-electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states.

15.
Sci Rep ; 4: 7292, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25465027

RESUMO

We report peculiar momentum-dependent anisotropy in the superconducting gap observed by angle-resolved photoemission spectroscopy in BaFe2(As(1-x)P(x))2 (x = 0.30, Tc = 30 K). Strongly anisotropic gap has been found only in the electron Fermi surface while the gap on the entire hole Fermi surfaces are nearly isotropic. These results are inconsistent with horizontal nodes but are consistent with modified s ± gap with nodal loops. We have shown that the complicated gap modulation can be theoretically reproduced by considering both spin and orbital fluctuations.

16.
Phys Rev Lett ; 110(10): 107204, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521291

RESUMO

We investigate the two-dimensional highly spin-polarized electron accumulation layers commonly appearing near the surface of n-type polar semiconductors BiTeX (X=I, Br, and Cl) by angular-resolved photoemission spectroscopy. Because of the polarity and the strong spin-orbit interaction built in the bulk atomic configurations, the quantized conduction-band subbands show giant Rashba-type spin splitting. The characteristic 2D confinement effect is clearly observed also in the valence bands down to the binding energy of 4 eV. The X-dependent Rashba spin-orbit coupling is directly estimated from the observed spin-split subbands, which roughly scales with the inverse of the band-gap size in BiTeX.

17.
Phys Rev Lett ; 109(5): 056401, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006190

RESUMO

The correlated electronic structure of SrVO(3) has been investigated by angle-resolved photoemission spectroscopy using in situ prepared thin films. Pronounced features of band renormalization have been observed: a sharp kink ∼60 meV below the Fermi level (E(F)) and a broad so-called "high-energy kink" ∼0.3 eV below E(F) as in the high-T(c) cuprates, although SrVO(3) does not show magnetic fluctuations. We have deduced the self-energy in a wide energy range by applying the Kramers-Kronig relation to the observed spectra. The obtained self-energy clearly shows a large energy scale of ∼0.7 eV, which is attributed to electron-electron interaction and gives rise to the ∼0.3 eV kink in the band dispersion as well as the incoherent peak ∼1.5 eV below E(F). The present analysis enables us to obtain a consistent picture for both the incoherent spectra and the band renormalization.

18.
Rev Sci Instrum ; 82(11): 113701, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128978

RESUMO

In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 µm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated.


Assuntos
Elétrons , Microscopia Eletrônica de Varredura/instrumentação , Nanotecnologia/instrumentação , Análise Espectral/instrumentação
19.
Science ; 333(6040): 319-22, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764742

RESUMO

The quantum confinement of strongly correlated electrons in artificial structures provides a platform for studying the behavior of correlated Fermi-liquid states in reduced dimensions. We report the creation and control of two-dimensional electron-liquid states in ultrathin films of SrVO(3) grown on Nb:SrTiO(3) substrates, which are artificial oxide structures that can be varied in thickness by single monolayers. Angle-resolved photoemission from the SrVO(3)/Nb:SrTiO(3) samples shows metallic quantum well states that are adequately described by the well-known phase-shift quantization rule. The observed quantum well states in SrVO(3) ultrathin films exhibit distinctive features--such as orbital-selective quantization originating from the anisotropic orbital character of the V 3d states and unusual band renormalization of the subbands near the Fermi level--that reflect complex interactions in the quantum well.

20.
Phys Rev Lett ; 104(14): 147601, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481962

RESUMO

We have investigated the changes occurring in the electronic structure of digitally controlled SrVO(3) ultrathin films across the metal-insulator transition (MIT) by the film thickness using in situ photoemission spectroscopy. With decreasing film thickness, a pseudogap is formed at E(F) through spectral weight transfer from the coherent part to the incoherent part. The pseudogap finally evolves into an energy gap that is indicative of the MIT in a SrVO(3) ultrathin film. The observed spectral behavior is reproduced by layer dynamical-mean-field-theory calculations, and it indicates that the observed MIT is caused by the reduction in the bandwidth due to the dimensional crossover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA