Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10537, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719934

RESUMO

Topological insulators (TI) hold significant potential for various electronic and optoelectronic devices that rely on the Dirac surface state (DSS), including spintronic and thermoelectric devices, as well as terahertz detectors. The behavior of electrons within the DSS plays a pivotal role in the performance of such devices. It is expected that DSS appear on a surface of three dimensional(3D) TI by mechanical exfoliation. However, it is not always the case that the surface terminating atomic configuration and corresponding band structures are homogeneous. In order to investigate the impact of surface terminating atomic configurations on electron dynamics, we meticulously examined the electron dynamics at the exfoliated surface of a crystalline 3D TI (Bi 2 Se 3 ) with time, space, and energy resolutions. Based on our comprehensive band structure calculations, we found that on one of the Se-terminated surfaces, DSS is located within the bulk band gap, with no other surface states manifesting within this region. On this particular surface, photoexcited electrons within the conduction band effectively relax towards DSS and tend to linger at the Dirac point for extended periods of time. It is worth emphasizing that these distinct characteristics of DSS are exclusively observed on this particular surface.

2.
Adv Sci (Weinh) ; 11(10): e2307058, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145354

RESUMO

High energy-conversion efficiency (ZT) of thermoelectric materials has been achieved in heavy metal chalcogenides, but the use of toxic Pb or Te is an obstacle for wide applications of thermoelectricity. Here, high ZT is demonstrated in toxic-element free Ba3 BO (B = Si and Ge) with inverse-perovskite structure. The negatively charged B ion contributes to hole transport with long carrier life time, and their highly dispersive bands with multiple valley degeneracy realize both high p-type electronic conductivity and high Seebeck coefficient, resulting in high power factor (PF). In addition, extremely low lattice thermal conductivities (κlat ) 1.0-0.4 W m-1  K-1 at T = 300-600 K are observed in Ba3 BO. Highly distorted O-Ba6 octahedral framework with weak ionic bonds between Ba with large mass and O provides low phonon velocities and strong phonon scattering in Ba3 BO. As a consequence of high PF and low κlat , Ba3 SiO (Ba3 GeO) exhibits rather high ZT = 0.16-0.84 (0.35-0.65) at T = 300-623 K (300-523 K). Finally, based on first-principles carrier and phonon transport calculations, maximum ZT is predicted to be 2.14 for Ba3 SiO and 1.21 for Ba3 GeO at T = 600 K by optimizing hole concentration. Present results propose that inverse-perovskites would be a new platform of environmentally-benign high-ZT thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA