Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Pharmacol Exp Ther ; 389(3): 268-276, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38702195

RESUMO

The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression, and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and nonpharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. SIGNIFICANCE STATEMENT: Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. This review provides insight into how manipulation of prefrontal cortex circuits could address this unmet need of more efficacious and safer pain therapeutics.


Assuntos
Córtex Pré-Frontal , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/metabolismo , Humanos , Animais , Dor Crônica/fisiopatologia , Dor Crônica/terapia , Dor/fisiopatologia , Dor/tratamento farmacológico
2.
Mol Psychiatry ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575807

RESUMO

Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.

3.
Transl Psychiatry ; 14(1): 11, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191458

RESUMO

The ventromedial prefrontal cortex (vmPFC; rodent infralimbic cortex (IL)), is posited to be an important locus of fear extinction-facilitating effects of the dopamine (DA) bio-precursor, L-DOPA, but this hypothesis remains to be formally tested. Here, in a model of impaired fear extinction (the 129S1/SvImJ inbred mouse strain; S1), we monitored extracellular DA dynamics via in vivo microdialysis in IL during fear extinction and following L-DOPA administration. Systemic L-DOPA caused sustained elevation of extracellular DA levels in IL and increased neuronal activation in a subpopulation of IL neurons. Systemic L-DOPA enabled extinction learning and promoted extinction retention at one but not ten days after training. Conversely, direct microinfusion of DA into IL produced long-term fear extinction (an effect that was insensitive to ɑ-/ß-adrenoreceptor antagonism). However, intra-IL delivery of a D1-like or D2 receptor agonist did not facilitate extinction. Using ex vivo multi-electrode array IL neuronal recordings, along with ex vivo quantification of immediate early genes and DA receptor signalling markers in mPFC, we found evidence of reduced DA-evoked mPFC network responses in S1 as compared with extinction-competent C57BL/6J mice that were partially driven by D1 receptor activation. Together, our data demonstrate that locally increasing DA in IL is sufficient to produce lasting rescue of impaired extinction. The finding that systemic L-DOPA increased IL DA levels, but had only transient effects on extinction, suggests L-DOPA failed to reach a threshold level of IL DA or produced opposing behavioural effects in other brain regions. Collectively, our findings provide further insight into the neural basis of the extinction-promoting effects of DA and L-DOPA in a clinically relevant animal model, with possible implications for therapeutically targeting the DA system in anxiety and trauma-related disorders.


Assuntos
Dopamina , Levodopa , Animais , Camundongos , Camundongos Endogâmicos C57BL , Levodopa/farmacologia , Extinção Psicológica , Medo , Córtex Pré-Frontal
4.
Curr Opin Psychiatry ; 36(6): 405-411, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471308

RESUMO

PURPOSE OF REVIEW: We reviewed the recent literature on the epidemiology and treatment of eating disorders among middle-aged and older women and men. RECENT FINDINGS: Recent studies show that among older female persons, the prevalence rates with full diagnoses of eating disorders based on DSM-IV or DSM-5 criteria are between 2.1 and 7.7%, and among older men less than 1%. These studies show that the prevalence of eating disorders decreases by age in women, but it does not get towards zero even in very high age. Middle age, with a peak around 50, is also a critical time for the occurrence of eating disorders in men. Women who reported severe menopausal symptoms showed more eating disorder pathology compared with those with low symptoms during menopausal transition. SUMMARY: Eating disorders do occur in middle and older age of both sexes. Shame and stigmatization have decreased, and medical awareness and explicit assessment of eating behavior in all age groups have developed. What puberty is for eating disorders in adolescence and young age is menopausal transition for midlife women. Also in men, associations with hormonal disturbances are possible. Treatment approaches should consider treatment strategies tailored to older women and men, addressing the context of midlife and aging.


Assuntos
Envelhecimento , Transtornos da Alimentação e da Ingestão de Alimentos , Pessoa de Meia-Idade , Masculino , Adolescente , Humanos , Feminino , Idoso , Menopausa , Transtornos da Alimentação e da Ingestão de Alimentos/epidemiologia , Transtornos da Alimentação e da Ingestão de Alimentos/terapia , Prevalência , Manual Diagnóstico e Estatístico de Transtornos Mentais
5.
Immun Ageing ; 20(1): 22, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173694

RESUMO

Pain in Fabry disease (FD) is generally accepted to result from neuronal damage in the peripheral nervous system as a consequence of excess lipid storage caused by alpha-galactosidase A (α-Gal A) deficiency. Signatures of pain arising from nerve injuries are generally associated with changes of number, location and phenotypes of immune cells within dorsal root ganglia (DRG). However, the neuroimmune processes in the DRG linked to accumulating glycosphingolipids in Fabry disease are insufficiently understood.Therefore, using indirect immune fluorescence microscopy, transmigration assays and FACS together with transcriptomic signatures associated with immune processes, we assessed age-dependent neuroimmune alterations in DRG obtained from mice with a global depletion of α-Gal A as a valid mouse model for FD. Macrophage numbers in the DRG of FD mice were unaltered, and BV-2 cells as a model for monocytic cells did not show augmented migratory reactions to glycosphingolipids exposure suggesting that these do not act as chemoattractants in FD. However, we found pronounced alterations of lysosomal signatures in sensory neurons and of macrophage morphology and phenotypes in FD DRG. Macrophages exhibited reduced morphological complexity indicated by a smaller number of ramifications and more rounded shape, which were age dependent and indicative of premature monocytic aging together with upregulated expression of markers CD68 and CD163.In our FD mouse model, the observed phenotypic changes in myeloid cell populations of the DRG suggest enhanced phagocytic and unaltered proliferative capacity of macrophages as compared to wildtype control mice. We suggest that macrophages may participate in FD pathogenesis and targeting macrophages at an early stage of FD may offer new treatment options other than enzyme replacement therapy.

6.
Pharmaceutics ; 15(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36986714

RESUMO

Cannabis sativa plants contain a multitude of bioactive substances, which show broad variability between different plant strains. Of the more than a hundred naturally occurring phytocannabinoids, Δ9-Tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been the most extensively studied, but whether and how the lesser investigated compounds in plant extracts affect bioavailability or biological effects of Δ9-THC or CBD is not known. We therefore performed a first pilot study to assess THC concentrations in plasma, spinal cord and brain after oral administration of THC compared to medical marijuana extracts rich in THC or depleted of THC. Δ9-THC levels were higher in mice receiving the THC-rich extract. Surprisingly, only orally applied CBD but not THC alleviated mechanical hypersensitivity in the mouse spared nerve injury model, favoring CBD as an analgesic compound for which fewer unwanted psychoactive effects are to be expected.

7.
Aging Male ; 26(1): 2154571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36790384

RESUMO

Although eating disorders were long considered a typical female disorder, it is now clear that men are also affected. However, the literature on eating disorders in men is still very limited, and the actual extent is not known. Even less is known about the epidemiology of eating disorders in older individuals. In this focused review, we will present an update of the available data on disordered eating and eating disorders in middle-aged and older males. In addition, we will highlight the relationship of eating disorders with excessive sports as a purging method of choice for this age group and discuss the impact of age-related hormonal imbalances in aging men.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Hormônios , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Envelhecimento , Transtornos da Alimentação e da Ingestão de Alimentos/complicações , Transtornos da Alimentação e da Ingestão de Alimentos/epidemiologia
8.
Mol Ther Nucleic Acids ; 28: 794-813, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35664695

RESUMO

Exosomes have emerged as a valuable repository of novel biomarkers for human diseases such as chronic kidney disease (CKD). From a healthy control group, we performed microRNA (miRNA) profiling of urinary exosomes and compared it with a cell culture model of renal proximal tubular epithelial cells (RPTECs). Thereby, a large fraction of abundant urinary exosomal miRNAs could also be detected in exosomes derived from RPTECs, indicating them as a suitable model system for investigation of CKD. We subsequently analyzed exosomes from RPTECs in pro-inflammatory and pro-fibrotic states, mimicking some aspects of CKD. Following cytokine treatment, we observed a significant increase in exosome release and identified 30 dysregulated exosomal miRNAs, predominantly associated with the regulation of pro-inflammatory and pro-fibrotic-related pathways. In addition to miRNAs, we also identified 16 dysregulated exosomal mitochondrial RNAs, highlighting a pivotal role of mitochondria in sensing renal inflammation. Inhibitors of exosome biogenesis and release significantly altered the abundance of selected candidate miRNAs and mitochondrial RNAs, thus suggesting distinct sorting mechanisms of different non-coding RNA (ncRNA) species into exosomes. Hence, these two exosomal ncRNA species might be employed as potential indicators for predicting the pathogenesis of CKD and also might enable effective monitoring of the efficacy of CKD treatment.

9.
Pflugers Arch ; 474(9): 965-978, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35655042

RESUMO

Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nociceptividade , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Nociceptores/metabolismo , Dor/metabolismo
10.
Pain ; 163(3): 579-589, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252913

RESUMO

ABSTRACT: Peripheral nerve injuries result in pronounced alterations in dorsal root ganglia, which can lead to the development of neuropathic pain. Although the polymodal mechanosensitive transient receptor potential ankyrin 1 (TRPA1) ion channel is emerging as a relevant target for potential analgesic therapies, preclinical studies do not provide unequivocal mechanistic insight into its relevance for neuropathic pain pathogenesis. By using a transgenic mouse model with a conditional depletion of the interleukin-6 (IL-6) signal transducer gp130 in Nav1.8 expressing neurons (SNS-gp130-/-), we provide a mechanistic regulatory link between IL-6/gp130 and TRPA1 in the spared nerve injury (SNI) model. Spared nerve injury mice developed profound mechanical hypersensitivity as indicated by decreased withdrawal thresholds in the von Frey behavioral test in vivo, as well as a significant increase in mechanosensitivity of unmyelinated nociceptive primary afferents in ex vivo skin-nerve recordings. In contrast to wild type and control gp130fl/fl animals, SNS-gp130-/- mice did not develop mechanical hypersensitivity after SNI and exhibited low levels of Trpa1 mRNA in sensory neurons, which were partially restored by adenoviral gp130 re-expression in vitro. Importantly, uninjured but not injured neurons developed increased responsiveness to the TRPA1 agonist cinnamaldehyde, and neurons derived from SNS-gp130-/- mice after SNI were significantly less responsive to cinnamaldehyde. Our study shows for the first time that TRPA1 upregulation is attributed specifically to uninjured neurons in the SNI model, and this depended on the IL-6 signal transducer gp130. We provide a solution to the enigma of TRPA1 regulation after nerve injury and stress its significance as an important target for neuropathic pain disorders.


Assuntos
Anquirinas , Receptor gp130 de Citocina/genética , Neuralgia , Animais , Anquirinas/genética , Gânglios Espinais/patologia , Hiperalgesia , Camundongos , Neuralgia/genética , Neuralgia/patologia , Células Receptoras Sensoriais , Canal de Cátion TRPA1/genética , Regulação para Cima
11.
Adv Sci (Weinh) ; 8(21): e2102354, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486248

RESUMO

Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Interface Usuário-Computador , Linhagem Celular , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Nociceptores/citologia , Nociceptores/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
12.
Nat Commun ; 12(1): 4340, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267207

RESUMO

Scattering in biological tissues is a major barrier for in vivo optical imaging of all but the most superficial structures. Progress toward overcoming the distortions caused by scattering in turbid media has been made by shaping the excitation wavefront to redirect power into a single point in the imaging plane. However, fast, non-invasive determination of the required wavefront compensation remains challenging. Here, we introduce a quickly converging algorithm for non-invasive scattering compensation, termed DASH, in which holographic phase stepping interferometry enables new phase information to be updated after each measurement. This leads to rapid improvement of the wavefront correction, forming a focus after just one measurement iteration and achieving an order of magnitude higher signal enhancement at this stage than the previous state-of-the-art. Using DASH, we demonstrate two-photon fluorescence imaging of microglia cells in highly turbid mouse hippocampal tissue down to a depth of 530 µm.


Assuntos
Algoritmos , Hipocampo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Hipocampo/citologia , Holografia , Camundongos , Microglia , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Pontos Quânticos , Espalhamento de Radiação
13.
Cytokine ; 144: 155582, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058569

RESUMO

The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.


Assuntos
Sobrevivência Celular/fisiologia , Interleucina-6/metabolismo , Neurônios/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo
14.
Biomed Opt Express ; 12(12): 7377-7387, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35003840

RESUMO

The two-photon fluorescence imaging depth has been significantly improved in recent years by compensating for tissue scattering with wavefront correction. However, in most approaches the wavefront corrections are valid only over a small sample region on the order of 1 to 10 µm. In samples where most scattering structures are confined to a single plane, sample conjugate correction geometries can increase the observable field to a few tens of µm. Here, we apply a recently introduced fast converging scheme for sensor-less scattering correction termed "Dynamic Adaptive Scattering compensation Holography" (DASH) in a sample conjugate configuration with a high pixel count nematic liquid crystal spatial light modulator (LC-SLM). Using a large SLM allows us to simultaneously correct for scattering at multiple field points, which can be distributed over the entire field of view provided by the objective lens. Despite the comparably slow refresh time of LC-SLMs, we achieve correction times on the order of 10 s per field point, which we show is sufficiently fast to counteract scattering at multiple sites in living mouse hippocampal tissue slices.

15.
Brain Sci ; 10(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503260

RESUMO

Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.

16.
Neuronal Signal ; 4(1): NS20190099, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32587755

RESUMO

Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.

17.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414089

RESUMO

Chronic pain patients frequently develop and suffer from mental comorbidities such as depressive mood, impaired cognition, and other significant constraints of daily life, which can only insufficiently be overcome by medication. The emotional and cognitive components of pain are processed by the medial prefrontal cortex, which comprises the anterior cingulate cortex, the prelimbic, and the infralimbic cortex. All three subregions are significantly affected by chronic pain: magnetic resonance imaging has revealed gray matter loss in all these areas in chronic pain conditions. While the anterior cingulate cortex appears hyperactive, prelimbic, and infralimbic regions show reduced activity. The medial prefrontal cortex receives ascending, nociceptive input, but also exerts important top-down control of pain sensation: its projections are the main cortical input of the periaqueductal gray, which is part of the descending inhibitory pain control system at the spinal level. A multitude of neurotransmitter systems contributes to the fine-tuning of the local circuitry, of which cholinergic and GABAergic signaling are particularly emerging as relevant components of affective pain processing within the prefrontal cortex. Accordingly, factors such as distraction, positive mood, and anticipation of pain relief such as placebo can ameliorate pain by affecting mPFC function, making this cortical area a promising target region for medical as well as psychosocial interventions for pain therapy.


Assuntos
Dor Crônica/fisiopatologia , Giro do Cíngulo/fisiopatologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Animais , Dor Crônica/complicações , Dor Crônica/tratamento farmacológico , Transtornos Cognitivos/complicações , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/fisiopatologia , Transtorno Depressivo/complicações , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Substância Cinzenta/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Humanos , Vias Neurais/patologia , Neurônios/patologia , Córtex Pré-Frontal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
18.
Front Neurosci ; 14: 287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322187

RESUMO

In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.

19.
Cells ; 9(1)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963421

RESUMO

MicroRNAs (miRNAs) function as master switches for post-transcriptional gene expression. Their genes are either located in the extragenic space or within host genes, but these intragenic miRNA::host gene interactions are largely enigmatic. The aim of this study was to investigate the location and co-regulation of all to date available miRNA sequences and their host genes in an unbiased computational approach. The majority of miRNAs were located within intronic regions of protein-coding and non-coding genes. These intragenic miRNAs exhibited both increased target probability as well as higher target prediction scores as compared to a model of randomly permutated genes. This was associated with a higher number of miRNA recognition elements for the hosted miRNAs within their host genes. In addition, strong indirect autoregulation of host genes through modulation of functionally connected gene clusters by intragenic miRNAs was demonstrated. In addition to direct miRNA-to-host gene targeting, intragenic miRNAs also appeared to interact with functionally related genes, thus affecting their host gene function through an indirect autoregulatory mechanism. This strongly argues for the biological relevance of autoregulation not only for the host genes themselves but, more importantly, for the entire gene cluster interacting with the host gene.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Peixe-Zebra/genética , Animais , Biologia Computacional , Bases de Dados Genéticas , Éxons , Homeostase/genética , Humanos , Íntrons , Camundongos , Modelos Genéticos , Família Multigênica , Mapeamento de Interação de Proteínas , RNA Antissenso
20.
Front Mol Neurosci ; 12: 283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824261

RESUMO

MicroRNAs (miRNAs) have emerged as master switch regulators in many biological processes in health and disease, including neuropathy. miRNAs are commonly quantified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), usually estimated as relative expression through reference genes normalization. Different non-coding RNAs (ncRNAs) are used for miRNA normalization; however, there is no study identifying the optimal reference genes in animal models for peripheral nerve injury. We evaluated the stability of eleven ncRNAs, commonly used for miRNA normalization, in dorsal root ganglia (DRG), dorsal horn of the spinal cord (dhSC), and medial prefrontal cortex (mPFC) in the mouse spared nerve injury (SNI) model. After RT-qPCR, the stability of each ncRNA was determined by using four different methods: BestKeeper, the comparative delta-Cq method, geNorm, and NormFinder. The candidates were rated according to their performance in each method and an overall ranking list was compiled. The most stable ncRNAs were: sno420, sno429, and sno202 in DRG; sno429, sno202, and U6 in dhSC; sno202, sno420, and sno142 in mPFC. We provide the first reference genes' evaluation for miRNA normalization in different neuronal tissues in an animal model of peripheral nerve injury. Our results underline the need for careful selection of reference genes for miRNA normalization in different tissues and experimental conditions. We further anticipate that our findings can be used in a broad range of nerve injury related studies, to ensure validity and promote reproducibility in miRNA quantification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA