Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(16): 2921-2933, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36894318

RESUMO

RNA stability is meticulously controlled. Here, we sought to determine whether an essential post-transcriptional regulatory mechanism plays a role in pain. Nonsense-mediated decay (NMD) safeguards against translation of mRNAs that harbor premature termination codons and controls the stability of ∼10% of typical protein-coding mRNAs. It hinges on the activity of the conserved kinase SMG1. Both SMG1 and its target, UPF1, are expressed in murine DRG sensory neurons. SMG1 protein is present in both the DRG and sciatic nerve. Using high-throughput sequencing, we examined changes in mRNA abundance following inhibition of SMG1. We confirmed multiple NMD stability targets in sensory neurons, including ATF4. ATF4 is preferentially translated during the integrated stress response (ISR). This led us to ask whether suspension of NMD induces the ISR. Inhibition of NMD increased eIF2-α phosphorylation and reduced the abundance of the eIF2-α phosphatase constitutive repressor of eIF2-α phosphorylation. Finally, we examined the effects of SMG1 inhibition on pain-associated behaviors. Peripheral inhibition of SMG1 results in mechanical hypersensitivity in males and females that persists for several days and priming to a subthreshold dose of PGE2. Priming was fully rescued by a small-molecule inhibitor of the ISR. Collectively, our results indicate that suspension of NMD promotes pain through stimulation of the ISR.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in their plasticity which may contribute to chronic pain. Translational regulation has emerged as a dominant mechanism in pain. Here, we investigate the role of a major pathway of RNA surveillance called nonsense-mediated decay (NMD). Modulation of NMD is potentially beneficial for a broad array of diseases caused by frameshift or nonsense mutations. Our results suggest that inhibition of the rate-limiting step of NMD drives behaviors associated with pain through activation of the ISR. This work reveals complex interconnectivity between RNA stability and translational regulation and suggests an important consideration in harnessing the salubrious benefits of NMD disruption.


Assuntos
Fator de Iniciação 2 em Eucariotos , Nociceptividade , Masculino , Feminino , Humanos , Camundongos , Animais , Fator de Iniciação 2 em Eucariotos/genética , Degradação do RNAm Mediada por Códon sem Sentido , Fosforilação , Dor , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/genética
2.
J Neurosci ; 42(49): 9129-9141, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270801

RESUMO

HuR is an RNA-binding protein implicated in RNA processing, stability, and translation. Previously, we examined protein synthesis in dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We found that the HuR consensus binding element was enriched in transcripts with elevated translation. HuR is expressed in the soma of nociceptors and their axons. Pharmacologic inhibition of HuR with the small molecule CMLD-2 reduced the activity of mouse and human sensory neurons. Peripheral administration of CMLD-2 in the paw or genetic elimination of HuR from sensory neurons diminished behavioral responses associated with NGF- and IL-6-induced allodynia in male and female mice. Genetic disruption of HuR altered the proximity of mRNA decay factors near a key neurotrophic factor (TrkA). Collectively, the data suggest that HuR is required for local control of mRNA stability and reveals a new biological function for a broadly conserved post-transcriptional regulatory factor.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in excitability, which may contribute to chronic pain. Noxious cues that promote pain lead to rapid induction of protein synthesis. The underlying mechanisms that confer specificity to mRNA control in nociceptors are unclear. Here, we identify a conserved RNA-binding protein called HuR as a key regulatory factor in sensory neurons. Using a combination of genetics and pharmacology, we demonstrate that HuR is required for signaling in nociceptors. In doing so, we report an important mechanism of mRNA control in sensory neurons that ensures appropriate nociceptive responses to inflammatory mediators.


Assuntos
Proteína Semelhante a ELAV 1 , Nociceptores , Animais , Feminino , Humanos , Masculino , Camundongos , Dor Crônica/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Hiperalgesia/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
3.
Nat Commun ; 12(1): 6789, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815424

RESUMO

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Corpos de Processamento/metabolismo , Ribossomos/metabolismo , Animais , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Quinase do Fator 2 de Elongação/genética , Gânglios Espinais/citologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Nelfinavir/farmacologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura
4.
Br J Pharmacol ; 178(23): 4675-4690, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34355805

RESUMO

BACKGROUND AND PURPOSE: Translational controls pervade neurobiology. Nociceptors play an integral role in the detection and propagation of pain signals. Nociceptors can undergo persistent changes in their intrinsic excitability. Pharmacological disruption of nascent protein synthesis diminishes acute and chronic forms of pain-associated behaviours. However, the targets of translational controls that facilitate plasticity in nociceptors are unclear. EXPERIMENTAL APPROACH: We used ribosome profiling to probe the translational landscape in dorsal root ganglion (DRG) neurons from male Swiss-Webster mice, after treatment with nerve growth factor and IL-6. Expression dynamics of c-Fos were followed with immunoblotting and immunohistochemistry. The involvement of ribosomal protein S6 kinase 1 (S6K1), a downstream component of mTOR signalling, in the control of c-Fos levels was assessed with low MW inhibitors of S6K1 (DG2) or c-Fos (T-5224), studying their effects on nociceptor activity in vitro using multielectrode arrays (MEAs) and pain behaviour in vivo in Swiss-Webster mice using the hyperalgesic priming model. KEY RESULTS: c-Fos was expressed in sensory neurons. Inflammatory mediators that promote pain in both humans and rodents promote c-Fos translation. The mTOR effector S6K1 is essential for c-Fos biosynthesis. Inhibition of S6K1 or c-Fos with low MW compounds diminished mechanical and thermal hypersensitivity in response to inflammatory cues. Additionally, both inhibitors reduced evoked nociceptor activity. CONCLUSION AND IMPLICATIONS: Our data show a novel role of S6K1 in modulating the rapid response to inflammatory mediators, with c-Fos being one key downstream target. Targeting the S6 kinase pathway or c-Fos is an exciting new avenue for pain-modulating compounds.


Assuntos
Nociceptores , Dor , Proteínas Quinases S6 Ribossômicas 90-kDa , Animais , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Masculino , Camundongos , Nociceptores/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
5.
J Neurosci ; 41(37): 7712-7726, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34326146

RESUMO

Injury responses require communication between different cell types in the skin. Sensory neurons contribute to inflammation and can secrete signaling molecules that affect non-neuronal cells. Despite the pervasive role of translational regulation in nociception, the contribution of activity-dependent protein synthesis to inflammation is not well understood. To address this problem, we examined the landscape of nascent translation in murine dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We identified the activity-dependent gene, Arc, as a target of translation in vitro and in vivo Inflammatory cues promote local translation of Arc in the skin. Arc-deficient male mice display exaggerated paw temperatures and vasodilation in response to an inflammatory challenge. Since Arc has recently been shown to be released from neurons in extracellular vesicles (EVs), we hypothesized that intercellular Arc signaling regulates the inflammatory response in skin. We found that the excessive thermal responses and vasodilation observed in Arc defective mice are rescued by injection of Arc-containing EVs into the skin. Our findings suggest that activity-dependent production of Arc in afferent fibers regulates neurogenic inflammation potentially through intercellular signaling.SIGNIFICANCE STATEMENT Nociceptors play prominent roles in pain and inflammation. We examined rapid changes in the landscape of nascent translation in cultured dorsal root ganglia (DRGs) treated with a combination of inflammatory mediators using ribosome profiling. We identified several hundred transcripts subject to rapid preferential translation. Among them is the immediate early gene (IEG) Arc. We provide evidence that Arc is translated in afferent fibers in the skin. Arc-deficient mice display several signs of exaggerated inflammation which is normalized on injection of Arc containing extracellular vesicles (EVs). Our work suggests that noxious cues can trigger Arc production by nociceptors which in turn constrains neurogenic inflammation in the skin.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Gânglios Espinais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Vasodilatação/fisiologia , Animais , Proteínas do Citoesqueleto/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nociceptividade/fisiologia , Nociceptores/fisiologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia
6.
Pain ; 162(6): 1864-1875, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449506

RESUMO

ABSTRACT: Translational regulation permeates neuronal function. Nociceptors are sensory neurons responsible for the detection of harmful stimuli. Changes in their activity, termed plasticity, are intimately linked to the persistence of pain. Although inhibitors of protein synthesis robustly attenuate pain-associated behavior, the underlying targets that support plasticity are largely unknown. Here, we examine the contribution of protein synthesis in regions of RNA annotated as noncoding. Based on analyses of previously reported ribosome profiling data, we provide evidence for widespread translation in noncoding transcripts and regulatory regions of mRNAs. We identify an increase in ribosome occupancy in the 5' untranslated regions of the calcitonin gene-related peptide (CGRP/Calca). We validate the existence of an upstream open reading frame (uORF) using a series of reporter assays. Fusion of the uORF to a luciferase reporter revealed active translation in dorsal root ganglion neurons after nucleofection. Injection of the peptide corresponding to the calcitonin gene-related peptide-encoded uORF resulted in pain-associated behavioral responses in vivo and nociceptor sensitization in vitro. An inhibitor of heterotrimeric G protein signaling blocks both effects. Collectively, the data suggest pervasive translation in regions of the transcriptome annotated as noncoding in dorsal root ganglion neurons and identify a specific uORF-encoded peptide that promotes pain sensitization through GPCR signaling.


Assuntos
Nociceptores , Dor/genética , Regiões 5' não Traduzidas/genética , Animais , Camundongos , Fases de Leitura Aberta , Ribossomos
7.
Nat Commun ; 9(1): 2511, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955037

RESUMO

RNA-protein interactions permeate biology. Transcription, translation, and splicing all hinge on the recognition of structured RNA elements by RNA-binding proteins. Models of RNA-protein interactions are generally limited to short linear motifs and structures because of the vast sequence sampling required to access longer elements. Here, we develop an integrated approach that calculates global pairwise interaction scores from in vitro selection and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals regulatory motifs, discriminates between regulated and non-regulated RNAs within their native genomic context, and correctly predicts the consequence of mutational events on binding activity. We design binding elements that improve binding activity in cells and infer mutational pathways that reveal permissive versus disruptive evolutionary trajectories between regulated motifs. These coupling landscapes are broadly applicable for the discovery and characterization of protein-RNA recognition at single nucleotide resolution.


Assuntos
Produtos do Gene tat/química , RNA Nucleotidiltransferases/química , Proteínas de Ligação a RNA/química , RNA/química , Proteínas Virais Reguladoras e Acessórias/química , Sequência de Aminoácidos , Bacteriófago lambda/química , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Imunodeficiência Bovina/química , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , RNA/genética , RNA/metabolismo , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de RNA , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
8.
Cytometry B Clin Cytom ; 94(1): 100-111, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27718302

RESUMO

BACKGROUND: Multiparametric flow cytometry (MFC) is a popular technique for minimal residual disease (MRD) analysis. However, its applicability is still limited to 90% of B-cell precursor acute lymphoblastic leukemia (BCPALL) due to two major issues, i.e. a proportion of cases do not express adequate leukemia associated immunophenotype (LAIPs) with currently used markers and drug-induced antigen modulation. Hence, the incorporation of additional reliable markers is required for the further improvement of MFC-based MRD evaluation. We studied the utility of new markers in improvising MFC-based MRD detection in BCPALL. METHODS: Expression-patterns of six new markers, i.e. CD24, CD44, CD72, CD73, CD86, and CD200 were studied in leukemic-blasts from ninety childhood BCPALL patients and in hematogones from 20 uninvolved staging bone marrow (BM) and ten postinduction non-BCPALL BM samples using eight-color MFC. The utility of these new markers in the day 35 postinduction MRD evaluation was determined. RESULTS: Frequencies of LAIPs of CD73, CD86, CD72, CD44, CD200, and CD24 in diagnostic samples were 76.7, 56.7, 55.6, 50, 28.9, and 20%, respectively. Differential expression of all new markers was highly significant (P < 0.01) between early (CD10+ CD19+ CD34+) hematogones, late (CD10+ CD19+ CD34-) hematogones and BCPALL blasts except between early hematogones and BCPALL blasts for CD200 (P = 0.1). In MRD-positive samples, CD73 showed the maximum (83%) frequency of LAIP and CD86 showed the highest (100%) stability of aberrant expression. Inclusion of CD73 and CD86 increased the applicability of MFC-MRD assay to 98.9% MRD samples. CONCLUSION: CD73 and CD86 are the most relevant markers to incorporate in the routine MRD evaluation of BCPALL. © 2016 International Clinical Cytometry Society.


Assuntos
5'-Nucleotidase/metabolismo , Antígeno B7-2/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasia Residual/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Adolescente , Adulto , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Criança , Pré-Escolar , Feminino , Citometria de Fluxo/métodos , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunofenotipagem/métodos , Lactente , Masculino , Adulto Jovem
9.
Cytometry A ; 89(3): 281-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26671309

RESUMO

Abnormal DNA ploidy is a valuable prognostic factor in many neoplasms, especially in hematological neoplasms like B-cell acute lymphoblastic leukemia (B-ALL) and multiple myeloma (MM). Current methods of flow-cytometric (FC) DNA-ploidy evaluation are either technically difficult or limited to three- to four-color immunophenotyping and hence, challenging to evaluate DNA-ploidy in minute tumor population with background rich of its normal counterpart cells and other hematopoietic cells. We standardized a novel sensitive and easy method of simultaneous evaluation of six- to seven-color immunophenotyping and DNA-ploidy using a dye-FxCycle Violet (FCV). Linearity, resolution, and coefficient of variation (CV) for FCV were studied using chicken erythrocyte nuclei. Ploidy results of FCV were compared with Propidium iodide (PI) in 20 samples and intra-assay variation for FCV was studied. Using this six-color immunophenotyping & FCV-protocol DNA-ploidy was determined in bone-marrow samples from 124 B-ALL & 50 MM patients. Dilution experiment was also conducted to determine the sensitivity in detection of aneuploidy in minute tumor population. FCV revealed high linearity and resolution in 450/50 channel. On comparison with PI, CV of Go/G1-peak with FCV (mean-CV 4.1%) was slightly higher than PI (mean-CV 2.9%) but had complete agreement in ploidy results. Dilution experiment showed that aneuploidy could be accurately detected up to the limit of 0.01% tumor cells. Intra-assay variation was very low with CV of 0.005%. In B-ALL, hypodiploidy was noted in 4%, hyperdiploidy in 24%, near-hyperdiploidy in 13% and remaining 59% were diploid. In MM, hypodiploidy was in 2%, hyperdiploidy in 58%, near-hyperdiploidy in 8% and remaining 30% were diploid. FCV-based DNA-ploidy method is a sensitive and easy method for simultaneous evaluation of six-color immunophenotyping and DNA analysis. It is useful in DNA-ploidy evaluation of minute tumor population in cases like minimal residual disease and MM precursor conditions.


Assuntos
DNA de Neoplasias/análise , Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Mieloma Múltiplo/diagnóstico , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Animais , Anticorpos/química , Antígenos CD/análise , Antígenos CD/genética , Antígenos CD/imunologia , Medula Óssea/imunologia , Medula Óssea/patologia , Núcleo Celular/ultraestrutura , Galinhas , DNA de Neoplasias/genética , DNA de Neoplasias/imunologia , Eritrócitos/ultraestrutura , Corantes Fluorescentes/química , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA