Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(33): e2301493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227134

RESUMO

The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that match the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro. Here, a synthetic, bioactive hydrogel is synthesized that mimics the native lung modulus and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin-binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which enables quiescent culture of human lung fibroblasts (HLFs). Stimulation with transforming growth factor ß1 (TGF-ß1), metastatic breast cancer conditioned media (CM), or tenascin-C-derived integrin-binding peptide activated hydrogel-encapsulated HLFs demonstrates multiple environmental methods to activate HLFs in a lung ECM-mimicking hydrogel. This lung hydrogel platform is a tunable, synthetic approach to studying the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.


Assuntos
Neoplasias da Mama , Tenascina , Humanos , Feminino , Tenascina/metabolismo , Tenascina/farmacologia , Matriz Extracelular/metabolismo , Fibroblastos , Hidrogéis/química , Peptídeos/química , Pulmão , Integrinas/metabolismo
2.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865293

RESUMO

The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that contain the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro . Here, we developed a synthetic, bioactive hydrogel that mimics the native lung modulus, and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which promotes quiescence of human lung fibroblasts (HLFs). Stimulation with transforming growth factor ß1 (TGF-ß1), metastatic breast cancer conditioned media (CM), or tenascin-C activated these hydrogel-encapsulated HLFs in a manner reflective of their native in vivo responses. We propose this lung hydrogel platform as a tunable, synthetic approach to study the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.

3.
Adv Healthc Mater ; 12(14): e2202275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625629

RESUMO

Breast cancer is a leading cause of global cancer-related deaths, and metastasis is the overwhelming culprit of poor patient prognosis. The most nefarious aspect of metastasis is dormancy, a prolonged period between primary tumor resection and relapse. Current therapies are insufficient at killing dormant cells; thus, they can remain quiescent in the body for decades until eventually undergoing a phenotypic switch, resulting in metastases that are more adaptable and drug resistant. Unfortunately, dormancy has few in vitro models, largely because lab-derived cell lines are highly proliferative. Existing models address tumor dormancy, not cellular dormancy, because tracking individual cells is technically challenging. To combat this problem, a live cell lineage approach to find and track individual dormant cells, distinguishing them from proliferative and dying cells over multiple days, is adapted. This approach is applied across a range of different in vitro microenvironments. This approach reveals that the proportion of cells that exhibit long-term quiescence is regulated by both cell intrinsic and extrinsic factors, with the most dormant cells found in 3D collagen gels. This paper envisions that this approach will prove useful to biologists and bioengineers in the dormancy community to identify, quantify, and study dormant tumor cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Linhagem da Célula , Neoplasias da Mama/patologia , Microambiente Tumoral
4.
PLoS One ; 13(10): e0204765, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332434

RESUMO

Published data on the mechanical strength and elasticity of lung tissue is widely variable, primarily due to differences in how testing was conducted across individual studies. This makes it extremely difficult to find a benchmark modulus of lung tissue when designing synthetic extracellular matrices (ECMs). To address this issue, we tested tissues from various areas of the lung using multiple characterization techniques, including micro-indentation, small amplitude oscillatory shear (SAOS), uniaxial tension, and cavitation rheology. We report the sample preparation required and data obtainable across these unique but complimentary methods to quantify the modulus of lung tissue. We highlight cavitation rheology as a new method, which can measure the modulus of intact tissue with precise spatial control, and reports a modulus on the length scale of typical tissue heterogeneities. Shear rheology, uniaxial, and indentation testing require heavy sample manipulation and destruction; however, cavitation rheology can be performed in situ across nearly all areas of the lung with minimal preparation. The Young's modulus of bulk lung tissue using micro-indentation (1.4±0.4 kPa), SAOS (3.3±0.5 kPa), uniaxial testing (3.4±0.4 kPa), and cavitation rheology (6.1±1.6 kPa) were within the same order of magnitude, with higher values consistently reported from cavitation, likely due to our ability to keep the tissue intact. Although cavitation rheology does not capture the non-linear strains revealed by uniaxial testing and SAOS, it provides an opportunity to measure mechanical characteristics of lung tissue on a microscale level on intact tissues. Overall, our study demonstrates that each technique has independent benefits, and each technique revealed unique mechanical features of lung tissue that can contribute to a deeper understanding of lung tissue mechanics.


Assuntos
Pulmão/fisiologia , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Feminino , Congelamento , Humanos , Técnicas In Vitro , Complacência Pulmonar/fisiologia , Masculino , Modelos Biológicos , Mecânica Respiratória/fisiologia , Reologia/métodos , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA