Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 594, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760406

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Assuntos
Adenosina Desaminase , Dieta Hiperlipídica , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação a RNA , Transdução de Sinais , Animais , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/deficiência , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Resistência à Insulina , Camundongos Obesos , Obesidade/metabolismo , Obesidade/genética , Camundongos Endogâmicos C57BL , Fígado/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38533529

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Sarcopenia is a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, which is commonly associated with NAFLD. Adenosine-to-inosine editing, catalysed by adenosine deaminase acting on RNA (ADAR), is an important post-transcriptional modification of genome-encoded RNA transcripts. Three ADAR gene family members, including ADAR1, ADAR2 and ADAR3, have been identified. However, the functional role of ADAR2 in obesity-associated NAFLD and sarcopenia remains unclear. METHODS: ADAR2+/+/GluR-BR/R mice (wild type [WT]) and ADAR2-/-/GluR-BR/R mice (ADAR2 knockout [KO]) were subjected to feeding with standard chow or high-fat diet (HFD) for 20 weeks at the age of 5 weeks. The metabolic parameters, hepatic lipid droplet, grip strength test, rotarod test, muscle weight, fibre cross-sectional area (CSA), fibre types and protein associated with protein degradation were examined. Systemic and local tissues serum amyloid A1 (SAA1) were measured. The effects of SAA1 on C2C12 myotube atrophy were investigated. RESULTS: ADAR2 KO mice fed with HFD exhibited lower body weight (-7.7%, P < 0.05), lower liver tissue weight (-20%, P < 0.05), reduced liver lipid droplets in concert with a decrease in hepatic triglyceride content (-24%, P < 0.001) and liver injury (P < 0.01). ADAR2 KO mice displayed protection against HFD-induced glucose intolerance, insulin resistance and dyslipidaemia. Skeletal muscle mass (P < 0.01), muscle strength (P < 0.05), muscle endurance (P < 0.001) and fibre size (CSA; P < 0.0001) were improved in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. Muscle atrophy-associated transcripts, such as forkhead box protein O1, muscle atrophy F-box/atrogin-1 and muscle RING finger 1/tripartite motif-containing 63, were decreased in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. ADAR2 deficiency attenuates HFD-induced local liver and skeletal muscle tissue inflammation. ADAR2 deficiency abolished HFD-induced systemic (P < 0.01), hepatic (P < 0.0001) and muscular (P < 0.001) SAA1 levels. C2C12 myotubes treated with recombinant SAA1 displayed a decrease in myotube length (-37%, P < 0.001), diameter (-20%, P < 0.01), number (-39%, P < 0.001) and fusion index (-46%, P < 0.01). Myogenic markers (myosin heavy chain and myogenin) were decreased in SAA1-treated myoblast C2C12 cells. CONCLUSIONS: These results provide novel evidence that ADAR2 deficiency may be important in obesity-associated sarcopenia and NAFLD. Increased SAA1 might be involved as a regulatory factor in developing sarcopenia in NAFLD.

3.
J Biol Chem ; 299(11): 105335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827291

RESUMO

Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation. In situ superoxide detection showed that HDGF-overexpressing hepatomas had significantly elevated ROS levels compared with adjacent nontumor tissues. Consistently, liver tissues from HDGF-deficient mice exhibited lower ROS fluorescence than those from age- and sex-matched WT mice. ROS-detecting fluorescent dyes and flow cytometry revealed that recombinant HDGF (rHDGF) stimulated the production of superoxide anion, hydrogen peroxide, and mitochondrial ROS generation in cultured hepatoma cells in a dose-dependent manner. In contrast, the inactive Ser103Ala rHDGF mutant failed to promote ROS generation or oncogenic behaviors. Seahorse metabolic flux assays revealed that rHDGF dose dependently upregulated bioenergetics through enhanced basal and total oxygen consumption rate, extracellular acidification rate, and oxidative phosphorylation in hepatoma cells. Moreover, antioxidants of N-acetyl cysteine and MitoQ treatment significantly inhibited HDGF-mediated cell proliferation and invasive capacity. Genetic silencing of superoxide dismutase 2 augmented the HDGF-induced ROS generation and oncogenic behaviors of hepatoma cells. Finally, genetic knockdown nucleolin (NCL) and antibody neutralization of surface NCL, the HDGF receptor, abolished the HDGF-induced increase in ROS and mitochondrial energetics. In conclusion, this study has demonstrated for the first time that the HDGF/NCL signaling axis induces ROS generation by elevating ROS generation in mitochondria, thereby stimulating liver carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Espécies Reativas de Oxigênio , Carcinogênese/genética
5.
J Biol Chem ; 298(10): 102442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055405

RESUMO

Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited ß-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ratos , Terapia Genética
6.
Genes (Basel) ; 13(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35456435

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common RCC subtype with a high mortality. It has been reported that delta-like 1 homologue (DLK1) participates in the tumor microenvironmental remodeling of ccRCC, but the relationship between delta-like 2 homologue (DLK2, a DLK1 homologue) and ccRCC is still unclear. Thus, this study aims to investigate the role of DLK2 in the biological function and disease prognosis of ccRCC using bioinformatics analysis. The TNMplot database showed that DLK2 was upregulated in ccRCC tissues. From the UALCAN analysis, the overexpression of DLK2 was associated with advanced stage and high grade in ccRCC. Moreover, the Kaplan-Meier plotter (KM Plotter) database showed that DLK2 upregulation was associated with poor survival outcome in ccRCC. By the LinkedOmics analysis, DLK2 signaling may participated in the modulation of ccRCC extracellular matrix (ECM), cell metabolism, ribosome biogenesis, TGF-ß signaling and Notch pathway. Besides, Tumor Immune Estimation Resource (TIMER) analysis showed that the macrophage and CD8+ T cell infiltrations were associated with good prognosis in ccRCC patients. Finally, DLK2 overexpression was associated with the reduced macrophage recruitments and the M1-M2 polarization of macrophage in ccRCC tissues. Together, DLK2 may acts as a novel biomarker, even therapeutic target in ccRCC. However, this study lacks experimental validation, and further studies are required to support this viewpoint.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Biologia Computacional , Feminino , Humanos , Neoplasias Renais/metabolismo , Masculino , Prognóstico
7.
Biomedicines ; 10(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35203529

RESUMO

Due to its aggressiveness and high mortality rate, oral cancer still represents a tough challenge for current cancer therapeutics. Similar to other carcinomas, cancerous invasion and metastasis are the most important prognostic factors and the main obstacles to therapy for human oral squamous cell carcinoma (OSCC). Fortunately, with the rise of the nanotechnical era and innovative nanomaterial fabrication, nanomaterials are widely used in biomedicine, cancer therapeutics, and chemoprevention. Recently, phytochemical substances have attracted increasing interest as adjuvants to conventional cancer therapy. The ginger phenolic compound zingerone, a multitarget pharmacological and bioactive phytochemical, possesses potent anti-inflammatory, antioxidant, and anticancer activities. In our previous study, we generated phytochemically derived zingerone nanoparticles (NPs), and documented their superior antitumorigenic effect on human hepatoma cells. In the present study, we further investigated the effects of zingerone NPs on inhibiting the invasiveness and metastasis of human OSCC cell lines. Zingerone NPs elicited significant cytotoxicity in three OSCC cell lines compared to zingerone. Moreover, the lower dose of zingerone NPs (25 µM) markedly inhibited colony formation and colony survival by at least five-fold compared to zingerone treatment. Additionally, zingerone NPs significantly attenuated cell motility and invasiveness. In terms of the signaling mechanism, we determined that the zingerone NP-mediated downregulation of Akt signaling played an important role in the inhibition of cell viability and cell motility. Zingerone NPs inhibited matrix metalloproteinase (MMP) activity, which was highly correlated with the attenuation of cell migration and cell invasion. By further detecting the roles of zingerone NPs in epithelial-mesenchymal transition (EMT), we observed that zingerone NPs substantially altered the levels of EMT-related markers by decreasing the levels of the mesenchymal markers, N-cadherin and vimentin, rather than the epithelial proteins, ZO-1 and E-cadherin, compared with zingerone. In conclusion, as novel and efficient phytochemically derived nanoparticles, zingerone NPs may serve as a potent adjuvant to protect against cell invasion and metastasis, which will provide a beneficial strategy for future applications in chemoprevention and conventional therapeutics in OSCC treatment.

8.
J Chin Med Assoc ; 84(12): 1109-1119, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643620

RESUMO

BACKGROUND: Nanoparticles have wide potential applications in biolabeling, bioimaging, and cell tracking. Development of dual functional nanoparticles increases the versatility. METHODS: We combined the fluorescent property of nano-epoxy (N-Epo) and the magnetic characteristic of FePt to fabricate the FePt-decorated N-Epo (N-Epo-FePt). The size in diameter of N-Epo-FePt (177.38 ± 39.25 nm) was bigger than N-Epo (2.28 ± 1.01 nm), both could be absorbed into mesenchymal stem cells (MSCs) via clathrin-mediated endocytosis and have multiple fluorescent properties (blue, green, and red). RESULTS: N-Epo-FePt prevented N-Epo-induced platelet activation, CD68+-macrophage differentiation in blood, and intracellular ROS generation in MSCs. The induction of apoptosis and the inhibitory effects of N-Epo-FePt on cell migration, MMP-9 activity, and secretion of SDF-1α were less than that of N-Epo in MSCs. CONCLUSION: N-Epo-FePt was more biocompatible without altering biological performance than N-Epo in MSCs. These results suggest that N-Epo-FePt nanoparticle can be used for fluorescence labeling of MSCs and is potential to apply to bioimaging and cell tracking of MSCs in vivo by magnetic resonance imaging or computed tomography.


Assuntos
Teste de Materiais , Células-Tronco Mesenquimais , Nanopartículas , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Nanopartículas/química , Tomografia Computadorizada por Raios X
9.
Mol Ther Oncolytics ; 22: 180-194, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34514098

RESUMO

Long noncoding RNAs (lncRNAs) are a group of nonprotein coding transcripts that play a critical role in cancer progression. However, the role of lncRNA in metformin-induced inhibition of cell growth and its biological function in gastric cancer remain largely unknown. In this study, we identified an oncogenic lncRNA, Loc100506691, the expression of which was decreased in gastric cancer cells with metformin treatment. Moreover, Loc100506691 was significantly overexpressed in gastric cancer compared with adjacent normal tissues (p < 0.001), and high Loc100506691 expression was significantly correlated with poor survival of patients with gastric cancer. Additionally, Loc100506691 knockdown could significantly suppress gastric cancer cell growth in vitro, and ectopic Loc100506691 expression accelerated tumor growth in an in vivo mouse model. Analysis of the cell cycle revealed that Loc100506691 knockdown induced cell cycle arrest at the G2/M phase by impairing cell entry from the G2/M to G1 phase. Loc100506691 negatively regulated CHAC1 expression by modulating miR-26a-5p/miR-330-5p expression, and CHAC1 knockdown markedly attenuated Loc100506691 knockdown-induced gastric cancer cell growth and motility suppression. We concluded that anti-proliferative effects of metformin in gastric cancer may be partially caused by suppression of the Loc100506691-miR-26a-5p/miR-330-5p-CHAC1 axis.

10.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502171

RESUMO

The engineering of vascular regeneration still involves barriers that need to be conquered. In the current study, a novel nanocomposite comprising of fibronectin (denoted as FN) and a small amount of silver nanoparticles (AgNP, ~15.1, ~30.2 or ~75.5 ppm) was developed and its biological function and biocompatibility in Wharton's jelly-derived mesenchymal stem cells (MSCs) and rat models was investigated. The surface morphology as well as chemical composition for pure FN and the FN-AgNP nanocomposites incorporating various amounts of AgNP were firstly characterized by atomic force microscopy (AFM), UV-Visible spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy (FTIR). Among the nanocomposites, FN-AgNP with 30.2 ppm silver nanoparticles demonstrated the best biocompatibility as assessed through intracellular ROS production, proliferation of MSCs, and monocytes activation. The expression levels of pro-inflammatory cytokines, TNF-α, IL-1ß, and IL-6, were also examined. FN-AgNP 30.2 ppm significantly inhibited pro-inflammatory cytokine expression compared to other materials, indicating superior performance of anti-immune response. Mechanistically, FN-AgNP 30.2 ppm significantly induced greater expression of vascular endothelial growth factor (VEGF) and stromal-cell derived factor-1 alpha (SDF-1α) and promoted the migration of MSCs through matrix metalloproteinase (MMP) signaling pathway. Besides, in vitro and in vivo studies indicated that FN-AgNP 30.2 ppm stimulated greater protein expressions of CD31 and von Willebrand Factor (vWF) as well as facilitated better endothelialization capacity than other materials. Furthermore, the histological tissue examination revealed the lowest capsule formation and collagen deposition in rat subcutaneous implantation of FN-AgNP 30.2 ppm. In conclusion, FN-AgNP nanocomposites may facilitate the migration and proliferation of MSCs, induce endothelial cell differentiation, and attenuate immune response. These finding also suggests that FN-AgNP may be a potential anti-inflammatory surface modification strategy for vascular biomaterials.


Assuntos
Anti-Inflamatórios/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Fibronectinas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas Metálicas , Prata , Animais , Proliferação de Células , Células Cultivadas , Citoesqueleto , Células Endoteliais/metabolismo , Imuno-Histoquímica , Metaloproteinases da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Nanomaterials (Basel) ; 11(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443877

RESUMO

Graphene-based nanocomposites such as graphene oxide (GO) and nanoparticle-decorated graphene with demonstrated excellent physicochemical properties have worthwhile applications in biomedicine and bioengineering such as tissue engineering. In this study, we fabricated gold nanoparticle-decorated GO (GO-Au) nanocomposites and characterized their physicochemical properties using UV-Vis absorption spectra, FTIR spectra, contact angle analyses, and free radical scavenging potential. Moreover, we investigated the potent applications of GO-Au nanocomposites on directing mesenchymal stem cells (MSCs) for tissue regeneration. We compared the efficacy of as-prepared GO-derived nanocomposites including GO, GO-Au, and GO-Au (×2) on the biocompatibility of MSCs, immune cell identification, anti-inflammatory effects, differentiation capacity, as well as animal immune compatibility. Our results showed that Au-deposited GO nanocomposites, especially GO-Au (×2), significantly exhibited increased cell viability of MSCs, had good anti-oxidative ability, sponged the immune response toward monocyte-macrophage transition, as well as inhibited the activity of platelets. Moreover, we also validated the superior efficacy of Au-deposited GO nanocomposites on the enhancement of cell motility and various MSCs-derived cell types of differentiation including neuron cells, adipocytes, osteocytes, and endothelial cells. Additionally, the lower induction of fibrotic formation, reduced M1 macrophage polarization, and higher induction of M2 macrophage, as well as promotion of the endothelialization, were also found in the Au-deposited GO nanocomposites implanted animal model. These results suggest that the Au-deposited GO nanocomposites have excellent immune compatibility and anti-inflammatory effects in vivo and in vitro. Altogether, our findings indicate that Au-decorated GO nanocomposites, especially GO-Au (×2), can be a potent nanocarrier for tissue engineering and an effective clinical strategy for anti-inflammation.

12.
Biomed Pharmacother ; 141: 111848, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34198047

RESUMO

Patients with type 2 diabetes mellitus have more risk to develop depression. Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI), is drug for mood and anxiety disorders. Previous studies showed that FLX could induce weight loss in non-depressed clinically overweight individuals. Although the anti-appetite effect of FLX is well-documented, its potential effects on metabolic abnormalities have not been investigated. In this study, we want to investigate whether FLX could be a therapeutic drug against high fat diet (HFD)-induced metabolic disorder. We generated metabolic disorders and depressed mouse model by feeding HFD for 12 weeks at the age of 8 weeks. Then, mice were intraperitoneally injected once daily with FLX (10 mg/kg or 20 mg/kg) for four weeks. Our results showed that FLX alleviated the HFD-induced metabolic dysfunctions and depressive phenotypes in mice. FLX improved systemic glucose homeostasis, at least in part, by improving visceral white adipose tissue (vWAT) insulin signaling. Moreover, FLX reduced circulating plasma leptin level, and decreased the expression of adipose triglyceride lipase (ATGL) and peroxisome proliferator-activated receptor gamma (PPARγ) in vWAT. Our data revealed that FLX also reduced the triglyceride (TG) accumulation in vWAT. Therefore, these findings suggest that FLX exhibits significant potential on comorbidity of metabolic disorder and depression in mice.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/enzimologia , Dieta Hiperlipídica/efeitos adversos , Fluoxetina/uso terapêutico , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/complicações , Depressão/psicologia , Glucose/metabolismo , Teste de Tolerância a Glucose , Injeções Intraperitoneais , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/psicologia , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
13.
J Chin Med Assoc ; 84(11): 1007-1018, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320517

RESUMO

BACKGROUND: Chitosan (Chi) is a natural material which has been widely used in neural applications due to possessing better biocompatibility. In this research study, a novel of nanocomposites film based on Chi with hyaluronic acid (HA), combined with varying amounts of gold nanoparticles (AuNPs), was created resulting in pure Chi, Chi-HA, Chi-HA-AuNPs (25 ppm), and Chi-HA-AuNPs (50 ppm). METHODS: This study focused on evaluating their effects on mesenchymal stem cell (MSC) viability, colony formation, and biocompatibility. The surface morphology and chemical position were characterized through UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), SEM, and contact-angle assessment. RESULTS: When seeding MSCs on Chi-HA-AuNPs (50 ppm), the results showed high cell viability, biocompatibility, and the highest colony formation ability. Meanwhile, the evidence showed that Chi-HA-Au nanofilm was able to inhibit nestin and ß-tubulin expression of MSCs, as well as inhibit the ability of neurogenic differentiation. Furthermore, the results of matrix metalloproteinase 2/9 (MMP2/9) expression in MSCs were also significantly higher in the Chi-HA-AuNP (50 ppm) group, guiding with angiogenesis and wound healing abilities. In addition, in our rat model, both capsule thickness and collagen deposition were the lowest in Chi-HA-AuNPs (50 ppm). CONCLUSION: Thus, in view of the in vitro and in vivo results, Chi-HA-AuNPs (50 ppm) could not only maintain the greatest stemness properties and regulate the neurogenic differentiation ability of MSCs, but was able to also induce the least immune response. Herein, Chi-HA-Au 50 ppm nanofilm holds promise as a suitable material for nerve regeneration engineering.


Assuntos
Quitosana/farmacologia , Ouro/farmacologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Animais , Sobrevivência Celular , Transplante de Células-Tronco Mesenquimais , Modelos Animais , Ratos
14.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114317

RESUMO

Melanoma is notoriously resistant to current cancer therapy. However, the chemoresistance mechanism of melanoma remains unclear. The present study unveiled that chemotherapy drug cisplatin induced the formation of giant cells, which exhibited enlargement in cell diameter and nucleus in mice and human melanoma cells. Giant cells were positive with melanoma maker S100 and cancer stem cell markers including ABCB5 and CD133 in vitro and in vivo. Moreover, giant cells retained the mitotic ability with expression of proliferation marker Ki-67 and exhibited multiple drug resistance to doxorubicin and actinomycin D. The mitochondria genesis/activities and cellular ATP level were significantly elevated in giant cells, implicating the demand for energy supply. Application of metabolic blockers such as sodium azide or 2-deoxy glucose abolished the cisplatin-induced giant cells formation and expression of cancer stemness markers. The present study unveils a novel chemoresistance mechanism of melanoma cells via size alteration and the anti-neoplastic strategy by targeting giant cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Células Gigantes/patologia , Melanoma/tratamento farmacológico , Antígeno AC133/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Desoxiglucose/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas S100/metabolismo , Azida Sódica/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancers (Basel) ; 12(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126743

RESUMO

Colorectal carcinoma (CRC) is one of the most prevalent cancers worldwide and has a high mortality rate. Long noncoding RNAs (lncRNAs) have been noted to play critical roles in cell growth; cell apoptosis; and metastasis in CRC. This study determined that LOC441461 expression was significantly higher in CRC tissues than in adjacent normal mucosa. Pathway enrichment analysis of LOC441461-coexpressed genes revealed that LOC441461 was involved in biological functions related to cancer cell growth and motility. Knockdown of the LOC441461 expression significantly suppressed colon cancer cell growth by impairing cell cycle progression and inducing cell apoptosis. Furthermore, significantly higher LOC441461 expression was discovered in primary colon tumors and metastatic liver tumors than in the corresponding normal mucosa, and LOC441461 knockdown was noted to suppress colon cancer cell motility. Knockdown of LOC441461 expression suppressed the phosphorylation of MLC and LIMK1 through the inhibition of RhoA/ROCK signaling. Overall, LOC441461 was discovered to play an oncogenic role in CRC cell growth and motility through RhoA/ROCK signaling. Our findings provide new insights into the regulation of lncRNAs and their application in the treatment of colon cancer.

16.
FASEB J ; 34(12): 16163-16178, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33063394

RESUMO

Hepatitis is an important health problem worldwide. Novel molecular targets are in demand for detection and management of hepatitis. Hepatoma-derived growth factor (HDGF) has been delineated to participate in hepatic fibrosis and liver carcinogenesis. However, the relationship between hepatitis and HDGF remains unclear. This study aimed to elucidate the role of HDGF during hepatitis using concanavalin A (ConA)-induced hepatitis model. In cultured hepatocytes, ConA treatment-elicited HDGF upregulation at transcriptional level and promoted HDGF secretion while reducing intracellular HDGF protein level and cellular viability. Similarly, mice receiving ConA administration exhibited reduced hepatic HDGF expression and elevated circulating HDGF level, which was positively correlated with serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. By using HDGF knockout (KO) mice, it was found the ConA-evoked cell death was prominently alleviated in KO compared with control. Besides, it was delineated HDGF ablation conferred protection by suppressing the ConA-induced neutrophils recruitment in livers. Above all, the ConA-mediated activation of tumor necrosis factor-α (TNF-α)/interleukin-1ß (IL-1ß)/interleukin-6 (IL-6)/cyclooxygenase-2 (COX-2) inflammatory signaling was significantly abrogated in KO mice. Treatment with recombinant HDGF (rHDGF) dose-dependently stimulated the expression of TNF-α/IL-1ß/IL-6/COX-2 in hepatocytes, further supporting the pro-inflammatory function of HDGF. Finally, application of HDGF antibody not only attenuated the ConA-mediated inflammatory cascade in hepatocytes, but also ameliorated the ConA-induced hepatic necrosis and AST elevation in mice. In summary, HDGF participates in ConA-induced hepatitis via neutrophils recruitment and may constitute a therapeutic target for acute hepatitis.


Assuntos
Concanavalina A/farmacologia , Hepatite Animal/induzido quimicamente , Hepatite Animal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Toxicol Appl Pharmacol ; 402: 115129, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673656

RESUMO

Urothelial carcinoma (UC) is one of the highest incidence cancers that rank the fourth commonly diagnosed tumors worldwide. The unresectable lesions that are resistant to therapeutic interventions is the major cause leading to death. Previous studies had shown that the resistance and metastatic consequence may arise from cancer stem-like cells population. The phytochemical flavonoids have promised bioactivity and potent anti-carcinogenic effects, and trap great attentions for cancer chemoprevention and/or adjuvant chemotherapy. However, the mechanisms of flavonoids on cancer stemness is still obscured. In this study, we analyzed the biofunctional effects of as-prepared flavonoid derivative-WYC0209 on T24, BFTC905 and BFTC909 human UC cell lines. Our results demonstrated that WYC0209 significantly induced anti-cell viability on UC cells through decreased Akt/NFkB signaling. Moreover, WYC0209 enhanced the cell apoptosis through activated the caspase-3 activity and inactivated Bcl-xL expression. Interestingly, WYC0209 dramatically inhibited the cancer stem cells (CSCs) traits, including attenuation of side population and tumorsphere formation in which were through declined EMT-CSCs markers including MDR1, ABCG2 and BMI-1. We further validated the effects of WYC0209 on several CSC surface markers including CD133, CD44, SOX-2 and Nanog. Our results showed that WYC0209 markedly inhibited CD133 expressions in both transcriptional and translational levels. High expression levels of CD133 was also demonstrated in human upper tract UC specimens. In summary, our study showed that WYC0209 may potentially as an adjuvant agent to against CD133-driven UC CSCs and provide a beneficial strategy to against UC cancer therapeutics resistant.


Assuntos
Antígeno AC133/metabolismo , Cicloexanonas/farmacologia , Flavonas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Urotélio/citologia , Antígeno AC133/genética , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Cicloexanonas/química , Flavonas/química , Humanos , Estrutura Molecular , Estudos Retrospectivos , Neoplasias da Bexiga Urinária
18.
ACS Appl Mater Interfaces ; 12(40): 44393-44406, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697572

RESUMO

Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.


Assuntos
Materiais Biocompatíveis/farmacologia , Dimetilpolisiloxanos/farmacologia , Dopamina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/química , Dopamina/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica , Estrutura Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
19.
Oncogene ; 38(37): 6461-6477, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31332288

RESUMO

Helicobacter pylori (Hp) infection and overexpression of hepatoma-derived growth factor (HDGF) are involved in gastric carcinogenesis. However, the relationship between Hp-induced gastric diseases and HDGF upregulation is not yet completely clear. This study aimed to elucidate the role of HDGF in Hp-induced gastric inflammation and carcinogenesis. HDGF expression in gastric biopsy and serum from patients was analyzed by immunohistochemical and ELISA analysis, respectively. Hp and gastric cells coculture system was employed to delineate the mechanism underlying HDGF overexpression during Hp infection. The gastric pathologies of wild type and HDGF knockout mice after Hp infection were investigated by immunohistochemical, immunoblot, and immunofluorescence analyses. HDGF level was significantly elevated in patients with Hp infection or intestinal metaplasia (IM, a precancerous lesion), and HDGF overexpression was positively correlated with Hp load, IM, and neutrophil infiltration in gastric biopsy. Consistently, patients with Hp infection or IM had significantly higher serum HDGF level. By using coculture assay, Hp infection led to HDGF upregulation and secretion in gastric cells. In mice model, HDGF ablation significantly suppressed the Hp-induced neutrophil infiltration and inflammatory TNF-α/COX-2 signaling, thereby relieving the tissue damage in stomach. This was further supported by that recombinant HDGF (rHDGF) stimulated the differentiation/chemotaxis of cultured neutrophils and oncogenic behaviors of gastric cells. Time series studies showed that Hp infection elicited an inflammatory TNF-α/HDGF/COX-2 cascade in stomach. HDGF secretion by Hp infection promotes the neutrophils infiltration and relays Hp-induced inflammatory signaling. Thus, HDGF may constitute a novel diagnostic marker and therapeutic target for Hp-induced gastritis and carcinogenesis.


Assuntos
Gastrite , Infecções por Helicobacter/complicações , Helicobacter pylori/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Infiltração de Neutrófilos , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Células Cultivadas , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/genética , Gastrite/imunologia , Gastrite/microbiologia , Gastrite/patologia , Células HL-60 , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Estômago/imunologia , Estômago/microbiologia , Estômago/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia
20.
Oncogene ; 38(17): 3201-3215, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30626939

RESUMO

Ovarian carcinoma is the most lethal type of gynecologic malignancies. Alterations of Notch pathway are prevalent in ovarian carcinogenesis. This study investigated the expression profile and function of delta-like 1 homolog (DLK1), a non-canonical Notch ligand, during ovarian carcinogenesis. Tissue microarray (TMA) consisting of surgically resected samples from 221 patients with ovarian carcinoma was constructed for DLK1 expression. DLK1 overexpression or knockdown was achieved by adenovirus gene delivery to evaluate the effect of DLK1 on the oncogenic behaviors in ovarian cancer cells and in xenografted tumors. TMA analysis revealed that elevated DLK1 expression was correlated with stages, lymph node metastasis and E-cadherin downregulation. Despite no influence on survival among ovarian carcinoma patients, DLK1 overexpression was specially associated with overall survival and progression free survival in high-grade serous carcinoma (HGSC) patients, constituting an independent prognostic factor for these patients. By adenovirus gene delivery, it was found modulation of cellular DLK1 level regulated the tumorigenic behaviors and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Immunohistochemical analysis further showed that DLK1 overexpression resulted in escalated proliferation, angiogenesis, EMT and Notch activities. Application of recombinant DLK1 extracellular domain (rDLK1-EC) recapitulated the tumorigenic behaviors of DLK1 in ovarian cancer cells. By using neutralizing antibody or pharmaceutical inhibitor, blockade of Notch signaling attenuated the tumorigenic behaviors evoked by DLK1 overexpression. The present study indicates that DLK1 overexpression participates in ovarian carcinogenesis through Notch activation and EMT induction. Moreover, DLK1 may constitute a novel diagnostic biomarker and therapeutic target for HGSC.


Assuntos
Carcinogênese/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Transição Epitelial-Mesenquimal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptores Notch/genética , Biomarcadores Tumorais/genética , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Feminino , Humanos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA