Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 46: 116391, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34488020

RESUMO

Amyloid aggregates of proteins are known to be involved in various diseases such as Alzheimer's disease (AD). It is therefore speculated that the inhibition of amyloid formation can play an important role in the prevention of various diseases involving amyloids. Recently, we have found that acrolein reacts with polyamines, such as spermine, and produces 1,5-diazacyclooctane, such as cyclic spermine (cSPM). cSPM could suppress the aggregation of amyloid ß 1-40 (Aß40), one of the causative proteins of AD. This result suggests the potential inhibitory effect of cSPM against Aß 1-42 (Aß42) and other amyloid protein aggregation which are the main pathological features of AD and other diseases. However, the effect on the aggregation of such proteins remains unclear. In this study, the effect of cSPM on the amyloid formation of Aß42, amylin, and insulin was investigated. These three amyloidogenic proteins forming amyloids under physiological conditions (pH 7.4 and 37℃) served as model and are thought to be the causative proteins of AD, type 2 diabetes, and insulin-derived amyloidosis, respectively. Our results indicate that cSPM can suppress the amyloid aggregation of these proteins and reduce cytotoxicity. This study contributes to a better understanding of means to potentially counteract diseases by the means of polyamine and acrolein.


Assuntos
Acroleína/farmacologia , Compostos Aza/farmacologia , Ciclo-Octanos/farmacologia , Espermina/farmacologia , Acroleína/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Compostos Aza/síntese química , Compostos Aza/química , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Relação Dose-Resposta a Droga , Humanos , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Estrutura Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Espermina/química , Relação Estrutura-Atividade
2.
RSC Adv ; 10(62): 37721-37727, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35515176

RESUMO

Amyloid specific fluorescent probes are becoming an important tool for studies of disease progression and conformational polymorphisms in diseases related to protein misfolding and aggregation such as localized and systemic amyloidosis. Herein, it is demonstrated that using the amyloid specific fluorescent probes pFTAA and benzostyryl capped benzothiadiazole BTD21, structural polymorphisms of insulin amyloids are imaged in localized insulin-derived amyloid aggregates formed at subcutaneous insulin-injection sites in patients with diabetes. It is also found that pFTAA and BTD21 could discriminate structural polymorphisms of insulin amyloids, so called fibrils and filaments, formed in vitro. In addition, it is shown that insulin drug preparations used for treating diabetes formed various types of amyloid aggregates that can be assessed and quantified using pFTAA and BTD21. Interestingly, incubated pFTAA-positive insulin preparation aggregates show cytotoxicity while BTD21-positive aggregates are less toxic. From these observations, a variety of amyloid polymorphic structures with different cytotoxicities formed both in vivo and in vitro by various insulin preparations are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA