Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 15(753): eabk1147, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36166510

RESUMO

Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.


Assuntos
Diglicerídeos , Ataxias Espinocerebelares , Animais , Diglicerídeos/metabolismo , Humanos , Camundongos , Mutação , Proteína Quinase C , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/genética
2.
J Biol Chem ; 296: 100445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617877

RESUMO

Within the AGC kinase superfamily, gene fusions resulting from chromosomal rearrangements have been most frequently described for protein kinase C (PKC), with gene fragments encoding either the C-terminal catalytic domain or the N-terminal regulatory moiety fused to other genes. Kinase fusions that eliminate regulatory domains are typically gain of function and often oncogenic. However, several quality control pathways prevent accumulation of aberrant PKC, suggesting that PKC fusions may paradoxically be loss of function. To explore this topic, we used biochemical, cellular, and genome editing approaches to investigate the function of fusions that retain the portion of the gene encoding either the catalytic domain or regulatory domain of PKC. Overexpression studies revealed that PKC catalytic domain fusions were constitutively active but vulnerable to degradation. Genome editing of endogenous genes to generate a cancer-associated PKC fusion resulted in cells with detectable levels of fusion transcript but no detectable protein. Hence, PKC catalytic domain fusions are paradoxically loss of function as a result of their instability, preventing appreciable accumulation of protein in cells. Overexpression of a PKC regulatory domain fusion suppressed both basal and agonist-induced endogenous PKC activity, acting in a dominant-negative manner by competing for diacylglycerol. For both catalytic and regulatory domain fusions, the PKC component of the fusion proteins mediated the effects of the full-length fusions on the parameters examined, suggesting that the partner protein is dispensable in these contexts. Taken together, our findings reveal that PKC gene fusions are distinct from oncogenic fusions and present a mechanism by which loss of PKC function occurs in cancer.


Assuntos
Neoplasias/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Animais , Sítios de Ligação , Células COS , Domínio Catalítico , Linhagem Celular Tumoral , Chlorocebus aethiops , Diglicerídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Mutação com Perda de Função/genética , Fosforilação , Domínios Proteicos , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
Nat Commun ; 11(1): 6088, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257668

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) integrates growth, nutrient and energy status cues to control cell growth and metabolism. While mTORC1 activation at the lysosome is well characterized, it is not clear how this complex is regulated at other subcellular locations. Here, we combine location-selective kinase inhibition, live-cell imaging and biochemical assays to probe the regulation of growth factor-induced mTORC1 activity in the nucleus. Using a nuclear targeted Akt Substrate-based Tandem Occupancy Peptide Sponge (Akt-STOPS) that we developed for specific inhibition of Akt, a critical upstream kinase, we show that growth factor-stimulated nuclear mTORC1 activity requires nuclear Akt activity. Further mechanistic dissection suggests that nuclear Akt activity mediates growth factor-induced nuclear translocation of Raptor, a regulatory scaffolding component in mTORC1, and localization of Raptor to the nucleus results in nuclear mTORC1 activity in the absence of growth factor stimulation. Taken together, these results reveal a mode of regulation of mTORC1 that is distinct from its lysosomal activation, which controls mTORC1 activity in the nuclear compartment.


Assuntos
Núcleo Celular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
J Biol Chem ; 293(27): 10744-10756, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29773654

RESUMO

The proto-oncogene Akt/protein kinase B (PKB) is a pivotal signal transducer for growth and survival. Growth factor stimulation leads to Akt phosphorylation at two regulatory sites (Thr-308 and Ser-473), acutely activating Akt signaling. Delineating the exact role of each regulatory site is, however, technically challenging and has remained elusive. Here, we used genetic code expansion to produce site-specifically phosphorylated Akt1 to dissect the contribution of each regulatory site to Akt1 activity. We achieved recombinant production of full-length Akt1 containing site-specific pThr and pSer residues for the first time. Our analysis of Akt1 site-specifically phosphorylated at either or both sites revealed that phosphorylation at both sites increases the apparent catalytic rate 1500-fold relative to unphosphorylated Akt1, an increase attributable primarily to phosphorylation at Thr-308. Live imaging of COS-7 cells confirmed that phosphorylation of Thr-308, but not Ser-473, is required for cellular activation of Akt. We found in vitro and in the cell that pThr-308 function cannot be mimicked with acidic residues, nor could unphosphorylated Thr-308 be mimicked by an Ala mutation. An Akt1 variant with pSer-308 achieved only partial enzymatic and cellular signaling activity, revealing a critical interaction between the γ-methyl group of pThr-308 and Cys-310 in the Akt1 active site. Thus, pThr-308 is necessary and sufficient to stimulate Akt signaling in cells, and the common use of phosphomimetics is not appropriate for studying the biology of Akt signaling. Our data also indicate that pThr-308 should be regarded as the primary diagnostic marker of Akt activity.


Assuntos
Código Genético , Imagem Molecular/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Células Cultivadas , Cristalografia por Raios X , Humanos , Mutação , Fosforilação , Conformação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Serina/química , Serina/genética , Treonina/química , Treonina/genética
5.
J Biol Chem ; 291(27): 13964-13973, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226531

RESUMO

Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.


Assuntos
Ácidos Anacárdicos/farmacologia , Anacardium/química , Antibacterianos/farmacologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/efeitos dos fármacos , Humanos , Lisofosfolipídeos/metabolismo , Explosão Respiratória , Esfingosina/análogos & derivados , Esfingosina/metabolismo
6.
J Biol Chem ; 290(44): 26776-83, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26350460

RESUMO

Phospholipase C-epsilon (PLCϵ) plays a critical role in G-protein-coupled receptor-mediated inflammation. In addition to its ability to generate the second messengers inositol 1,4,5-trisphosphate and diacylglycerol, PLCϵ, unlike the other phospholipase C family members, is activated in a sustained manner. We hypothesized that the ability of PLCϵ to function as a guanine nucleotide exchange factor (GEF) for Rap1 supports sustained downstream signaling via feedback of Rap1 to the enzyme Ras-associating (RA2) domain. Using gene deletion and adenoviral rescue, we demonstrate that both the GEF (CDC25 homology domain) and RA2 domains of PLCϵ are required for long term protein kinase D (PKD) activation and subsequent induction of inflammatory genes. PLCϵ localization is largely intracellular and its compartmentalization could contribute to its sustained activation. Here we show that localization of PLCϵ to the Golgi is required for activation of PKD in this compartment as well as for subsequent induction of inflammatory genes. These data provide a molecular mechanism by which PLCϵ mediates sustained signaling and by which astrocytes mediate pathophysiological inflammatory responses.


Assuntos
Astrócitos/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/metabolismo , Trombina/farmacologia , Proteínas rap1 de Ligação ao GTP/metabolismo , ras-GRF1/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Compartimento Celular , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Inflamação , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoinositídeo Fosfolipase C/genética , Cultura Primária de Células , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Trombina/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , ras-GRF1/genética
7.
Proc Natl Acad Sci U S A ; 112(9): E937-46, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25713130

RESUMO

Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are two such major signaling hubs in eukaryotes. Conventionally, canonical signal transduction via trimeric G proteins is thought to be triggered exclusively by G protein-coupled receptors. Here we used molecular engineering to develop modular fluorescent biosensors that exploit the remarkable specificity of bimolecular recognition, i.e., of both G proteins and RTKs, and reveal the workings of a novel platform for activation of G proteins by RTKs in single living cells. Comprised of the unique modular makeup of guanidine exchange factor Gα-interacting vesicle-associated protein (GIV)/girdin, a guanidine exchange factor that links G proteins to a variety of RTKs, these biosensors provide direct evidence that RTK-GIV-Gαi ternary complexes are formed in living cells and that Gαi is transactivated within minutes after growth factor stimulation at the plasma membrane. Thus, GIV-derived biosensors provide a versatile strategy for visualizing, monitoring, and manipulating the dynamic association of Gαi with RTKs for noncanonical transactivation of G proteins in cells and illuminate a fundamental signaling event regulated by GIV during diverse cellular processes and pathophysiologic states.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Ligação ao GTP , Receptores Proteína Tirosina Quinases , Receptores de Fatores de Crescimento , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Chem Biol ; 22(1): 98-106, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25556943

RESUMO

Protein kinase D (PKD) is acutely activated by two tightly coupled events: binding to the second messenger diacylglycerol (DAG) followed by novel protein kinase C (nPKC) phosphorylation at the activation loop and autophosphorylation at the C terminus. Thus, phosphorylation serves as a widely accepted measure of PKD activity. Here we show that treatment of cells with PKD inhibitors paradoxically promotes agonist-dependent activation loop phosphorylation, thus uncoupling phosphorylation from activation. This inhibitor-induced enhancement of phosphorylation differs mechanistically from that previously reported for PKC and Akt, for which active-site inhibitors stabilize a phosphatase-resistant conformation. Rather, a conformational reporter reveals that inhibitor binding induces a conformational change, resulting in relocalization of PKD to basal DAG pools, where it is more readily phosphorylated by nPKCs. These findings illustrate the diverse conformational effects that small molecules exert on their target proteins, underscoring the importance of using caution when interpreting kinase activity from phosphorylation state.


Assuntos
Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Células COS , Domínio Catalítico , Chlorocebus aethiops , Diglicerídeos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Complexo de Golgi/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temperatura
9.
Proc Natl Acad Sci U S A ; 111(38): E3957-65, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201979

RESUMO

Growth factor receptor levels are aberrantly high in diverse cancers, driving the proliferation and survival of tumor cells. Understanding the molecular basis for this aberrant elevation has profound clinical implications. Here we show that the pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) suppresses receptor tyrosine kinase (RTK) signaling output by a previously unidentified epigenetic mechanism unrelated to its previously described function as the hydrophobic motif phosphatase for the protein kinase AKT, protein kinase C, and S6 kinase. Specifically, we show that nuclear-localized PHLPP suppresses histone phosphorylation and acetylation, in turn suppressing the transcription of diverse growth factor receptors, including the EGF receptor. These data uncover a much broader role for PHLPP in regulation of growth factor signaling beyond its direct inactivation of AKT: By suppressing RTK levels, PHLPP dampens the downstream signaling output of two major oncogenic pathways, the PI3 kinase/AKT and the Rat sarcoma (RAS)/ERK pathways. Our data are consistent with a model in which PHLPP modifies the histone code to control the transcription of RTKs.


Assuntos
Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Linhagem Celular Transformada , Receptores ErbB/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Sequências Repetitivas de Aminoácidos , Transcrição Gênica/fisiologia
10.
Chem Biol ; 21(4): 459-469, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24631122

RESUMO

Optimal tuning of enzyme signaling is critical for cellular homeostasis. We use fluorescence resonance energy transfer reporters in live cells to follow conformational transitions that tune the affinity of a multidomain signal transducer, protein kinase C (PKC), for optimal response to second messengers. This enzyme comprises two diacylglycerol sensors, the C1A and C1B domains, that have a sufficiently high intrinsic affinity for ligand so that the enzyme would be in a ligand-engaged, active state if not for mechanisms that mask its domains. We show that both diacylglycerol sensors are exposed in newly synthesized PKC and that conformational transitions following priming phosphorylations mask the domains so that the lower affinity sensor, the C1B domain, is the primary diacylglycerol binder. The conformational rearrangements of PKC serve as a paradigm for how multimodule transducers optimize their dynamic range of signaling.


Assuntos
Proteína Quinase C/química , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Células COS , Bovinos , Células Cultivadas , Chlorocebus aethiops , Diglicerídeos/química , Diglicerídeos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Camundongos , Modelos Moleculares , Fosforilação , Conformação Proteica , Ratos
11.
J Biol Chem ; 289(13): 8781-98, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24500718

RESUMO

Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Movimento , Proteína Quinase C-delta/metabolismo , Proteólise , Animais , Células COS , Chlorocebus aethiops , Conexina 43/química , Junções Comunicantes/efeitos dos fármacos , Células HeLa , Humanos , Movimento/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Serina/metabolismo
12.
Methods Mol Biol ; 1071: 129-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24052385

RESUMO

Kinase signaling is under tight spatiotemporal control, with signaling hubs within the cell often coordinated by protein scaffolds. Genetically encoded kinase activity reporters afford a unique tool to interrogate the rate, amplitude, and duration of kinase signaling at specific locations throughout the cell. This protocol describes how to assay kinase activity at a protein scaffold in live cells using a fluorescence resonance energy transfer (FRET)-based kinase activity sensor for protein kinase D (PKD) as an example.


Assuntos
Ensaios Enzimáticos/métodos , Imagem Molecular/métodos , Proteínas Quinases/metabolismo , Animais , Sobrevivência Celular , Cães , Transferência Ressonante de Energia de Fluorescência , Células Madin Darby de Rim Canino , Proteínas Quinases/química , Estrutura Terciária de Proteína
13.
J Biol Chem ; 286(33): 28922-28930, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21715334

RESUMO

Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C.


Assuntos
Domínio Catalítico/fisiologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Células COS , Chlorocebus aethiops , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína Quinase C/química , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
14.
J Biol Chem ; 286(38): 33390-400, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795686

RESUMO

Protein kinase D (PKD) is a nodal point in cardiac hypertrophic signaling. It triggers nuclear export of class II histone deacetylase (HDAC) and regulates transcription. Although this pathway is thought to be critical in cardiac hypertrophy and heart failure, little is known about spatiotemporal aspects of PKD activation at the myocyte level. Here, we demonstrate that in adult cardiomyocytes two important neurohumoral stimuli that induce hypertrophy, endothelin-1 (ET1) and phenylephrine (PE), trigger comparable global PKD activation and HDAC5 nuclear export, but via divergent spatiotemporal PKD signals. PE-induced HDAC5 export is entirely PKD-dependent, involving fleeting sarcolemmal PKD translocation (for activation) and very rapid subsequent nuclear import. In contrast, ET1 recruits and activates PKD that remains predominantly sarcolemmal. This explains why PE-induced nuclear HDAC5 export in myocytes is totally PKD-dependent, whereas ET1-induced HDAC5 export depends more prominently on InsP(3) and CaMKII signaling. Thus α-adrenergic and ET-1 receptor signaling via PKD in adult myocytes feature dramatic differences in cellular localization and translocation in mediating hypertrophic signaling. This raises new opportunities for targeted therapeutic intervention into distinct limbs of this hypertrophic signaling pathway.


Assuntos
Envelhecimento/metabolismo , Endotelina-1/farmacologia , Miócitos Cardíacos/enzimologia , Fenilefrina/farmacologia , Proteína Quinase C/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde , Histona Desacetilases/metabolismo , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Coelhos , Proteínas Recombinantes de Fusão/metabolismo , Sarcolema/efeitos dos fármacos , Sarcolema/enzimologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
15.
J Biol Chem ; 285(30): 22748-52, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20519514

RESUMO

Protein kinase C and protein kinase D are potently activated by agonist-evoked increases in diacylglycerol. Using live cell-imaging probes for kinase activity, we have shown that both kinases are robustly activated at the Golgi following stimulation of G(q)-coupled receptor signaling pathways, displaying activation signatures at the Golgi that are distinct from those at the plasma membrane. Here we report that Ca(2+) is the mediator that allows signals received at the plasma membrane to activate these two protein kinases at the Golgi. Specifically, using fluorescence resonance energy transfer-based reporters to image diacylglycerol production, we show that Ca(2+) is necessary and sufficient to elevate diacylglycerol levels at the Golgi. First, raising intracellular Ca(2+) by treating cells with thapsigargin induces diacylglycerol production at the Golgi. Second, chelation of intracellular Ca(2+) prevents UTP-stimulated increases in diacylglycerol at the Golgi. Thus, agonist-evoked increases in intracellular Ca(2+) cause increases in Golgi diacylglycerol, allowing this intracellular membrane to serve as a platform for signaling by protein kinases C and D.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Diglicerídeos/biossíntese , Complexo de Golgi/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células COS , Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Complexo de Golgi/efeitos dos fármacos , Fosfatidato Fosfatase/antagonistas & inibidores , Fosfoinositídeo Fosfolipase C/antagonistas & inibidores , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína
16.
J Biol Chem ; 284(36): 24653-61, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19581308

RESUMO

Protein kinase D (PKD) transduces an abundance of signals downstream of diacylglycerol production. The mammalian PKD family consists of three isoforms, PKD1, PKD2, and PKD3; of these PKD1 and PKD2 contain PDZ-binding motifs at their carboxyl termini. Here we show that membrane-localized NHERF scaffold proteins provide a nexus for tightly controlled PKD signaling via a PDZ domain interaction. Using a proteomic array containing 96 purified PDZ domains, we have identified the first PDZ domain of NHERF-1 as an interaction partner for the PDZ-binding motifs of both PKD1 and PKD2. A fluorescence resonance energy transfer-based translocation assay reveals a transient association of PKD1 and PKD2 with NHERF-1 in live cells that is triggered by phorbol ester stimulation and, importantly, differs strikingly from the sustained translocation to plasma membrane. Targeting a fluorescence resonance energy transfer-based kinase activity reporter for PKD to NHERF scaffolds reveals a unique signature of PKD activation at the scaffold that is distinct from that of general cytosolic or plasma membrane activity. Specifically, agonist-evoked activation of PKD at the scaffold is rapid and sustained but blunted in magnitude when compared with cytosolic PKD. Thus, live cell imaging of PKD activity demonstrates ultrasensitive control of kinase signaling at the scaffold compared with bulk activity in the cytosol or at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Carcinógenos/farmacologia , Membrana Celular/genética , Cães , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ésteres de Forbol/farmacologia , Fosfoproteínas/genética , Proteína Quinase C/genética , Proteína Quinase D2 , Proteínas Quinases/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/genética
17.
Curr Protoc Chem Biol ; 1(1): 17-18, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21804950

RESUMO

The advent of genetically encoded FRET-based kinase activity reporters has ushered in a new era of signal transduction research. Such reporters allow the direct monitoring of kinase activity in live cells at specific locations, providing unprecedented information on the spatiotemporal dynamics of kinase signaling. Specifically, FRET-sensitive conformational changes in the reporters following phosphorylation serve as a direct readout of kinase activity. These genetically encoded reporters allow not only temporal resolution of kinase activity, but also spatial resolution: by fusing appropriate targeting sequences, reporters can be positioned at specific subcellular locations. Herein we present a strategy to generate and target kinase activity reporters to discrete intracellular regions to measure kinase signaling in live cells.

18.
Mol Cell ; 32(2): 169-79, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18951085

RESUMO

Elevated catecholamines in the heart evoke transcriptional activation of the Myocyte Enhancer Factor (MEF) pathway to induce a cellular response known as pathological myocardial hypertrophy. We have discovered that the A-Kinase Anchoring Protein (AKAP)-Lbc is upregulated in hypertrophic cardiomyocytes. It coordinates activation and movement of signaling proteins that initiate MEF2-mediated transcriptional reprogramming events. Live-cell imaging, fluorescent kinase activity reporters, and RNA interference techniques show that AKAP-Lbc couples activation of protein kinase D (PKD) with the phosphorylation-dependent nuclear export of the class II histone deacetylase HDAC5. These studies uncover a role for AKAP-Lbc in which increased expression of the anchoring protein selectively amplifies a signaling pathway that drives cardiac myocytes toward a pathophysiological outcome.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Cardiomegalia/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Fatores de Transcrição MEF2 , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Regulação Miogênica/metabolismo , Fenilefrina/farmacologia , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Ratos
19.
J Biol Chem ; 282(9): 6733-42, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17189263

RESUMO

Protein kinase D (PKD) regulates many diverse cellular functions in response to diacylglycerol. To monitor PKD signaling in live cells, we generated a genetically encoded fluorescent reporter for PKD activity, DKAR (D kinase activity reporter). DKAR expressed in mammalian cells undergoes reversible fluorescence resonance energy transfer changes upon activation and inhibition of endogenous PKD. Surprisingly, we find that agonist-evoked activation of PKD is driven not only by diacylglycerol production, but by Ca(2+). Furthermore, elevation of intracellular Ca(2+), in the absence of any other stimulus, is sufficient to activate PKD. Concurrent imaging of Ca(2+), diacylglycerol, and PKD activity reveals that thapsigargin-mediated elevation of intracellular Ca(2+) is closely followed by a robust increase in diacylglycerol production, in turn followed by PKD activation. The Ca(2+)-induced production of diacylglycerol and accompanying PKD activation is dependent on phospholipase C activity. These data reveal that Ca(2+) is a major contributor to the initiation of PKD signaling through positive feedback regulation of diacylglycerol production, unveiling a new mechanism in PKD activation.


Assuntos
Cálcio/fisiologia , Genes Reporter , Proteína Quinase C/metabolismo , Animais , Cálcio/análise , Diglicerídeos/biossíntese , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Humanos , Fosfolipases Tipo C/metabolismo
20.
J Biol Chem ; 281(41): 30947-56, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16901905

RESUMO

Protein kinase C (PKC) family members transduce an abundance of diverse intracellular signals. Here we address the role of spatial and temporal segregation in signal specificity by measuring the activity of endogenous PKC at defined intracellular locations in real time in live cells. We targeted a genetically encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter (CKAR) (Violin, J. D., Zhang, J., Tsien, R. Y., and Newton, A. C. (2003) J. Cell Biol. 161, 899-909), to the plasma membrane, Golgi, cytosol, mitochondria, or nucleus by fusing appropriate targeting sequences to the NH2 or COOH terminus of CKAR. Measuring the phosphorylation of the reporter in the presence of PKC inhibitors, activators, and/or phosphatase inhibitors shows that activity at each region is under differential control by phosphatase activity; nuclear activity is completely suppressed by phosphatases, whereas membrane-associated activity is the least suppressed by phosphatases. UTP stimulation of endogenous P2Y receptors in COS 7 cells reveals spatiotemporally divergent PKC responses. Imaging the second messengers Ca2+ and diacylglycerol (DAG) reveal that PKC activity at each location is driven by an initial spike in Ca2+, followed by location-specific diacylglycerol generation. In response to UTP, phosphorylation of GolgiCKAR was sustained the longest, driven by the persistence of DAG, whereas phosphorylation of CytoCKAR was of the shortest duration, driven by high phosphatase activity. Our data reveal that the magnitude and duration of PKC signaling is location-specific and controlled by the level of phosphatase activity and persistence of DAG at each location.


Assuntos
Proteína Quinase C/química , Proteína Quinase C/metabolismo , Animais , Células COS , Cálcio/metabolismo , Linhagem Celular , Chlorocebus aethiops , Diglicerídeos/química , Transferência Ressonante de Energia de Fluorescência , Genes Reporter , Modelos Biológicos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA