Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 82(3): 416-428, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35348802

RESUMO

Oil and gas extraction in the Prairie Pothole Region (PPR) of the northern USA has resulted in elevated chloride concentrations in ground and surface water due to widespread contamination with highly saline produced water, or brine. The toxicity of chloride is poorly understood in the high hardness waters characteristic of the region. We evaluated the toxicity of chloride to two endemic species, Daphnia magna (water flea) and Lemna gibba (duckweed), exposed in field-collected waters (hardness ~ 3000 mg/L as CaCO3) and reconstituted waters (hardness 370 mg/L as CaCO3) intended to mimic PPR background waters. We also investigated the role of chloride in the toxicity of water reconstituted to mimic legacy brine-contaminated wetlands, using two populations of native Pseudacris maculata (Boreal Chorus Frog). Chloride toxicity was similar in field-collected and reconstituted waters for both D. magna (LC50s 3070-3788 mg Cl-1/L) and L. gibba (IC50s 2441-2887). Although hardness can ameliorate chloride toxicity at low to high hardness, we did not observe additional protection as hardness increased from 370 to ~ 3000 mg/L. In P. maculata exposures, chloride did not fully explain toxicity. Chloride sensitivity also differed between populations, with mortality at 2000 mg Cl-/L in one population but not the other, and population-specific growth responses. Overall, these results (1) document toxicity to native species at chloride concentrations occurring in the PPR, (2) indicate that very high hardness in the region's waters may not provide additional protection against chloride and (3) highlight challenges of brine investigations, including whether surrogate study populations are representative of local populations.


Assuntos
Cloretos , Pradaria , Animais , Cloretos/toxicidade , Daphnia , Água Doce , Áreas Alagadas
2.
Arch Environ Contam Toxicol ; 82(2): 294-305, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33566128

RESUMO

Unpaved roads make up at least 14 million kilometers of the worldwide road network. Although investigations of road runoff often are focused on paved roads, unpaved roads contribute large volumes of runoff to roadside aquatic habitats and introduce unique constituents to runoff, such as chemical dust suppressants. At least 200 products across five chemical categories are commercially available for road dust suppression and are typically applied at rates up to 4.5 L/m2. Many of these products are poorly described and are lacking basic information on environmental transport, fate, and potential toxicity to roadside organisms. We characterized the aquatic toxicity of 27 commercially available dust control products, including 13 biobased products from the U.S. Department of Agriculture BioPreferred catalog, using juvenile rainbow trout. Acute toxicity varied by more than 1000-fold among products, with 96-h LC50 values ranging from 1.7 to > 16,000 mg/L. Toxicity was not well-predicted by product category. Testing with selected products after simulated weathering under UV radiation did not provide evidence of photoenhanced toxicity. Additional tests with freshwater mussels, juvenile crayfish, pond snails, and amphibian larvae indicated that juvenile rainbow trout were reasonable surrogates for these organisms for a subset of products. This effort represents one of the first comparative studies of dust suppressant toxicity and provides important information for assessing risk to aquatic resources from a widely used but understudied class of contaminants in road runoff.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Poeira/análise , Monitoramento Ambiental , Água Doce , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Toxicol Chem ; 39(5): 1071-1085, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113188

RESUMO

Elevated nitrate (NO3 ) and sulfate (SO4 ) in surface water are of global concern, and studies are needed to generate toxicity data to develop environmental guideline values for NO3 and SO4 . The present study was designed to fill existing gaps in toxicity databases by determining the acute and/or chronic toxicity of NO3 (tested as NaNO3 ) to a unionid mussel (Lampsilis siliquoidea), a midge (Chironomus dilutus), a fish (rainbow trout, Oncorhynchus mykiss), and 2 amphibians (Hyla versicolor and Lithobates sylvaticus), and to determine the acute and/or chronic toxicity of SO4 (tested as Na2 SO4 ) to 2 unionid mussels (L. siliquoidea and Villosa iris), an amphipod (Hyalella azteca), and 2 fish species (fathead minnow, Pimephales promelas and O. mykiss). Among the different test species, acute NO3 median effect concentrations (EC50s) ranged from 189 to >883 mg NO3 -N/L, and chronic NO3 20% effect concentrations (EC20s) based on the most sensitive endpoint ranged from 9.6 to 47 mg NO3 -N/L. The midge was the most sensitive species, and the trout was the least sensitive species in both acute and chronic NO3 exposures. Acute SO4 EC50s for the 2 mussel species (2071 and 2064 mg SO4 /L) were similar to the EC50 for the amphipod (2689 mg SO4 /L), whereas chronic EC20s for the 2 mussels (438 and 384 mg SO4 /L) were >2-fold lower than the EC20 of the amphipod (1111 mg SO4 /L), indicating the high sensitivity of mussels in chronic SO4 exposures. However, the fathead minnow, with an EC20 of 374 mg SO4 /L, was the most sensitive species in chronic SO4 exposures whereas the rainbow trout was the least sensitive species (EC20 > 3240 mg SO4 /L). The high sensitivity of fathead minnow was consistent with the finding in a previous chronic Na2 SO4 study. However, the EC20 values from the present study conducted in test water containing a higher potassium concentration (3 mg K/L) were >2-fold greater than those in the previous study at a lower potassium concentration (1 mg K/L), which confirmed the influence of potassium on chronic Na2 SO4 toxicity to the minnow. Environ Toxicol Chem 2020;39:1071-1085. © 2020 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Nitratos/toxicidade , Sulfatos/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Feminino , Oncorhynchus mykiss/fisiologia , Especificidade da Espécie , Unionidae/efeitos dos fármacos , Qualidade da Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-31379053

RESUMO

Amphibians such as frogs, toads, and salamanders provide important services in aquatic and terrestrial ecosystems and have been proposed as useful indicators of progress and success for ecological restoration projects. Limited guidance is available, however, on the costs and benefits of different amphibian monitoring techniques that might be applied to sites restored in compensation for contaminant injury. We used a variety of methods to document the amphibian communities present at 4 restored bottomland hardwood sites in Indiana, USA, and to compare the information return and cost of each method. For 1 method-automated recording units-we also modeled the effect of varying levels of sampling effort on the number of species detected, using sample-based rarefaction and Bayesian nonlinear (Michaelis-Menten) mixed effects models. We detected 13 amphibian species across the restored sites, including 2 species of conservation concern in Indiana-northern leopard frogs (Lithobates pipiens) and Blanchard's cricket frogs (Acris blanchardi). Sites across a range of restoration ages demonstrated encouraging returns of amphibian communities. Although more mature sites showed greater species richness, recently restored sites still provided important habitat for amphibians, including species of conservation concern. Among the 4 methods compared, amphibian rapid assessment yielded the highest number of species detected and the greatest catch per unit effort, with the lowest per-site cost. Our analysis of level-of-effort effects in the rarefied acoustic data found that number of nights sampled was a better predictor of observed species richness than the number of hours sampled within a night or minutes sampled within an hour. These data will assist restoration practitioners in selecting amphibian monitoring methods appropriate for their site characteristics and budget. Integr Environ Assess Manag 2019;00:1-15. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

5.
Evol Appl ; 10(8): 829-838, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29151874

RESUMO

Ecotoxicological studies have provided extensive insights into the lethal and sublethal effects of environmental contaminants. These insights are critical for environmental regulatory frameworks, which rely on knowledge of toxicity for developing policies to manage contaminants. While varied approaches have been applied to ecotoxicological questions, perspectives related to the evolutionary history of focal species or populations have received little consideration. Here, we evaluate chloride toxicity from the perspectives of both macroevolution and contemporary evolution. First, by mapping chloride toxicity values derived from the literature onto a phylogeny of macroinvertebrates, fish, and amphibians, we tested whether macroevolutionary relationships across species and taxa are predictive of chloride tolerance. Next, we conducted chloride exposure tests for two amphibian species to assess whether potential contemporary evolutionary change associated with environmental chloride contamination influences chloride tolerance across local populations. We show that explicitly evaluating both macroevolution and contemporary evolution can provide important and even qualitatively different insights from those obtained via traditional ecotoxicological studies. While macroevolutionary perspectives can help forecast toxicological end points for species with untested sensitivities, contemporary evolutionary perspectives demonstrate the need to consider the environmental context of exposed populations when measuring toxicity. Accounting for divergence among populations of interest can provide more accurate and relevant information related to the sensitivity of populations that may be evolving in response to selection from contaminant exposure. Our data show that approaches accounting for and specifically examining variation among natural populations should become standard practice in ecotoxicology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA