Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924413

RESUMO

Aluminum and silicon are contaminants found in formulations used to prepare parenteral nutrition. Both elements are leached from glass containers, mainly during the heating cycle for sterilization. Insoluble and biologically inactive species of hydroxyaluminosilicates have been shown to form in solutions containing Al and Si. Therefore, this interaction may play an important role in protecting the body against Al toxicity. In this study, the bioavailability of Al in the presence of Si, calcium gluconate (Gluc.), and potassium phosphate (Phosf.) was investigated in rats. The rats were divided into 10 groups of 5 animals each: control, Al, Si, Al + Si, Gluc, Gluc + Al, Gluc + Al + Si, Phosf, Phosf + Al, and Phosf + Al + Si. The doses, consisting of 0.5 mg/kg/day Al and 2 mg/kg/day Si in the presence or absence of Gluc. or Phosf., were intraperitoneally administered for 3 months. Tissues were analyzed for Al and Si content. Al accumulated in the liver, kidneys, and bones, and the simultaneous administration of Si decreased Al accumulation in these tissues. The presence of Si reduced the amount of Al present by 72% in the liver, by 45% in the kidneys, and by 16% in bone. This effect was lees pronounced in the presence of parenteral nutrition compounds though. Si tissue accumulation was also observed, mainly when administered together with phosphate. These results suggest that Si may act as a protector against Al toxicity, by either reducing Al absorption or increasing its excretion, probably through hydroxyaluminosilicates formation. The presence of calcium gluconate and potassium phosphate decreases or inhibits this effect.

2.
Chem Biol Interact ; 279: 177-186, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29191452

RESUMO

This study has evaluated the action of flavonoid hesperidin on the neurotoxic effects caused by the intake of iron (Fe) in Drosophila melanogaster. Male adult flies, aged 1-3 days, have been divided into four groups of 50 each: (1) control, (2) Hsd 10 µM, (3) Fe 20 mM (4) Hsd 10 µM + Fe 20 mM. During the exposure protocol, the flies have been exposed to a diet containing Hsd and/or Fe for 48 h. The survival and behavioral analyses have been carried out in vivo, and ex vivo. The analyses involved acetylcholinesterase (AChE) activity and Fe levels in the flies' heads and bodies and determination of dopaminergic levels, cellular and mitochondrial viability, activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reactive species levels (RS), thiobarbituric acid reactive substances (TBARS) and contents of total thiols and non-proteic thiols (NPSH) in the flies' heads. A significant negative correlation between Fe levels in the head of the flies and the survival, dopamine levels and antioxidant enzymes in the head of the flies has been found. Additionally, significant positive correlation between Fe levels in the head of the flies with negative geotaxis RS and AChE activity in the head of the flies has been found. It demonstrates that the flies which had higher levels of Fe in their heads have demonstrated more susceptibility to neurotoxicity. An important result from our study is that Hsd treatment promotes a decrease in Fe concentration in the head, restores dopamine levels and cholinergic activity of the flies and improves motor function caused by Fe. Hsd also ameliorates Fe induced mortality, oxidative stress and mitochondrial dysfunction. Our results have demonstrated the neuroprotective effect of Hsd and it suggests that flavonoid acts in different ways to protect against the Parkinson disease caused by Fe exposure such as the direct scavenging of RS and activation of antioxidant enzymes.


Assuntos
Dopamina/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Hesperidina/farmacologia , Ferro/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Animais , Biomarcadores , Masculino , Metalotioneína/metabolismo , Mitocôndrias , Atividade Motora/efeitos dos fármacos , Oxirredução , Doença de Parkinson Secundária/prevenção & controle
3.
Toxicol Appl Pharmacol ; 313: 109-118, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984129

RESUMO

AIMS: Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl3) on blood pressure, vascular reactivity and oxidative stress. METHODS AND RESULTS: Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl3: single dose of AlCl3 (100mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor l-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesenteric resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl3 exposure serum Al levels attained 147.7±25.0µg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. CONCLUSION: AlCl3-acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K+ channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the vascular system.


Assuntos
Alumínio/toxicidade , Artérias/efeitos dos fármacos , Resistência Vascular , Animais , Artérias/metabolismo , Artérias/fisiologia , Masculino , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA