Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(1): 218-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164173

RESUMO

Copper (Cu) plays a crucial and diverse function in biological systems, acting as a cofactor at numerous sites of enzymatic activity and participating in various physiological processes, including oxidative stress regulation, lipid metabolism, and energy metabolism. Similar to other micronutrients, the body regulates Cu levels to ensure homeostasis; any disruption in Cu homeostasis may result in various illnesses. Cuproptosis causes proteotoxic stress and ultimately results in cell death by the binding of Cu ions to lipid-acylated proteins during the tricarboxylic acid cycle of mitochondrial respiration. Cu is not only involved in regulatory cell death (RCD), but also in exogenous factors that induce cellular responses and toxic outcomes. Cu imbalances also affect the transmission of several RCD messages. Therefore, this article presents a thorough examination of the mechanisms involved in Cu-induced RCD as well as the role of Cu complexes in its pathophysiology.


Assuntos
Morte Celular Regulada , Humanos , Morte Celular , Comunicação , Cobre/toxicidade , Metabolismo Energético , Apoptose
2.
Aging (Albany NY) ; 15(20): 11298-11312, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847178

RESUMO

The present study investigates the clinical relevance of glycolytic factors, specifically PGAM1, in the tumor microenvironment of kidney renal clear cell carcinoma (KIRC). Despite the established role of glycolytic metabolism in cancer pathophysiology, the prognostic implications and key targets in KIRC remain elusive. We analyzed GEO and TCGA datasets to identify DEGs in KIRC and studied their relationship with immune gene expression, survival, tumor stage, gene mutations, and infiltrating immune cells. We explored Pgam1 gene expression in different kidney regions using spatial transcriptomics after mouse kidney injury analysis. Single-cell RNA-sequencing was used to assess the association of PGAM1 with immune cells. Findings were validated with tumor specimens from 60 KIRC patients, correlating PGAM1 expression with clinicopathological features and prognosis using bioinformatics and immunohistochemistry. We demonstrated the expression of central gene regulators in renal cancer in relation to genetic variants, deletions, and tumor microenvironment. Mutations in these hub genes were positively associated with distinct immune cells in six different immune datasets and played a crucial role in immune cell infiltration in KIRC. Single-cell RNA-sequencing revealed that elevated PGAM1 was associated with immune cell infiltration, specifically macrophages. Furthermore, pharmacogenomic analysis of renal cancer cell lines indicated that inactivation of PGAM1 was associated with increased sensitivity to specific small-molecule drugs. Altered PGAM1 in KIRC is associated with disease progression and immune microenvironment. It has diagnostic and prognostic implications, indicating its potential in precision medicine and drug screening.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Transcriptoma , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Rim , Macrófagos , RNA , Microambiente Tumoral/genética
3.
Nat Commun ; 13(1): 1238, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264584

RESUMO

In the long history of traditional Chinese medicine, single herbs and complex formulas have been suggested to increase lifespan. However, the identification of single molecules responsible for lifespan extension has been challenging. Here, we collected a list of traditional Chinese medicines with potential longevity properties from pharmacopeias. By utilizing the mother enrichment program, we systematically screened these traditional Chinese medicines and identified a single herb, Psoralea corylifolia, that increases lifespan in Saccharomyces cerevisiae. Next, twenty-two pure compounds were isolated from Psoralea corylifolia. One of the compounds, corylin, was found to extend the replicative lifespan in yeast by targeting the Gtr1 protein. In human umbilical vein endothelial cells, RNA sequencing data showed that corylin ameliorates cellular senescence. We also examined an in vivo mammalian model, and found that corylin extends lifespan in mice fed a high-fat diet. Taken together, these findings suggest that corylin may promote longevity.


Assuntos
Células Endoteliais , Longevidade , Animais , Flavonoides/farmacologia , Mamíferos , Medicina Tradicional Chinesa , Camundongos
4.
Biomedicines ; 9(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680446

RESUMO

E3 ubiquitin-linked enzyme MARCH5, also known as membrane-associated circular finger 5, is an enzyme encoded by the human MARCH5 gene. The main objective of this study was to visualize the prognosis of MARCH5 in breast cancer and to determine the relationship between MARCH5 expression and tumor immunity. MARCH5 expression was significantly higher in several cancers, including breast cancer (BRCA), compared with corresponding normal tissues. Not only was high MARCH5 expression associated with poorer overall survival, but also MARCH5 expression was positively correlated with the number of tumor-infiltrating immune cells in BRCA malignant tissues. Furthermore, MARCH5 expression showed a strong correlation with various immune markers of BRCA, suggesting its role in regulating tumor immunity. MARCH5 is a useful prognostic biomarker in several cancers, and its expression is highly correlated with tumor immune cell infiltration, and increased MARCH5 expression may serve as a new biomarker for BRCA diagnosis and prognosis.

5.
Front Cell Dev Biol ; 9: 743892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604240

RESUMO

Mitochondria are double-membraned organelles that exhibit fluidity. They are the main site of cellular aerobic respiration, providing energy for cell proliferation, migration, and survival; hence, they are called "powerhouses." Mitochondria play an important role in biological processes such as cell death, cell senescence, autophagy, lipid synthesis, calcium homeostasis, and iron balance. Fission and fusion are active processes that require many specialized proteins, including mechanical enzymes that physically alter mitochondrial membranes, and interface proteins that regulate the interaction of these mechanical proteins with organelles. This review discusses the molecular mechanisms of mitochondrial fusion, fission, and physiopathology, emphasizing the biological significance of mitochondrial morphology and dynamics. In particular, the regulatory mechanisms of mitochondria-related genes and proteins in animal cells are discussed, as well as research trends in mitochondrial dynamics, providing a theoretical reference for future mitochondrial research.

6.
Pharmacol Res ; 164: 105291, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253817

RESUMO

Brown adipose tissue (BAT) activation or beige adipocytes in white adipocytes (WAT) (browning) is a novel strategy against obesity. Corylin, a flavonoid compound extract from Psoralea corylifolia L., has been shown to exert anti-inflammatory, anticancer, and anti-atherosclerotic effects and ameliorate hyperlipidemia and insulin resistance. However, the therapeutic effect of corylin on obesity remains unknown. The objective of this study was to evaluate the effect of corylin on browning or obesity. Here, we report that corylin induced browning by elevating the expression levels of beige- or browning-specific marker genes, including cited1, hoxc9, pgc1α, prdm16, and ucp1, in 3T3-L1 adipocytes, WAT and BAT. Moreover, corylin also strikingly reduced body weight and fat accumulation and increased insulin sensitivity, mitochondrial biogenesis, and ß-oxidation in HFD- and DIO-treated mice. The browning and lipolysis effects of corylin were abolished by sirtuin 1 (SIRT1) inhibitor (EX527) and ß3-adrenergic receptor (ß3-AR) antagonist (L-748,337) treatment. The possible molecular mechanism of corylin on the browning and lipolysis of adipocytes is through SIRT1- or ß3-AR-dependent pathways. The study suggested that corylin exerts anti-obesity effects through the browning of white adipocytes, activating of BAT and promoting of lipid metabolism. Therefore, corylin may be a helpful therapeutic candidate for treating obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Flavonoides/uso terapêutico , Obesidade/tratamento farmacológico , Receptores Adrenérgicos beta 3/metabolismo , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Flavonoides/farmacologia , Resistência à Insulina , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
7.
DNA Repair (Amst) ; 82: 102690, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31479843

RESUMO

Combining natural products with chemotherapy and/or radiotherapy may increase the efficacy of cancer treatment. It has been hypothesized that natural products may inhibit DNA repair and sensitize cancer cells to DNA damage-based cancer therapy. However, the molecular mechanisms underlying these activities remain unclear. In this study, we found that diallyl disulfide (DADS), an organosulfur compound, increased the sensitivity of yeast cells to DNA damage and has potential for development as an adjuvant drug for DNA damage-based cancer therapy. We induced HO endonuclease to generate a specific DNA double-strand break (DSB) by adding galactose to yeast and used this system to study how DADS affects DNA repair. In this study, we found that DADS inhibited DNA repair in single-strand annealing (SSA) system and sensitized SSA cells to a single DSB. DADS impaired DNA repair by inhibiting the protein levels of the DNA resection-related proteins Sae2 and Exo1. We also found that the recruitment of MRX and the Mec1-Ddc2 complex to a DSB was prevented by DADS. This result suggests that DADS counteracts G2/M DNA damage checkpoint activation in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Only by elucidating the molecular mechanisms by which DADS influences DNA repair will we be able to discover new adjuvant drugs to improve chemotherapy and/or radiotherapy.


Assuntos
Compostos Alílicos/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Dissulfetos/farmacologia , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Morte Celular Autofágica/efeitos dos fármacos , Morte Celular Autofágica/genética , Sinergismo Farmacológico , Proteólise/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Int J Mol Sci ; 18(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215575

RESUMO

Effective DNA repair enables cancer cells to survive DNA damage induced by chemotherapeutic or radiotherapeutic treatments. Therefore, inhibiting DNA repair pathways is a promising therapeutic strategy for increasing the efficacy of such treatments. In this study, we found that dihydrocoumarin (DHC), a flavoring agent, causes deficiencies in double-stand break (DSB) repair and prolonged DNA damage checkpoint recovery in yeast. Following DNA damage, Rad52 recombinase was revealed to be inhibited by DHC, which results in deficiencies in DSB repair and prolonged DNA damage checkpoint recovery. The deletion of RPD3, a class I histone deacetylase (HDAC), was found to mimic DHC-induced suppression of Rad52 expression, suggesting that the HDAC inhibitor activity of DHC is critical to DSB repair and DNA damage sensitivity. Overall, our findings delineate the regulatory mechanisms of DHC in DSB repair and suggest that it might potentially be used as an inhibitor of the DNA repair pathway in human cells.


Assuntos
Cumarínicos/toxicidade , Dano ao DNA , Aromatizantes/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Cumarínicos/farmacologia , Aromatizantes/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA