Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 67(9): e2200336, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36825504

RESUMO

SCOPE: This study investigates the effect of epigallocatechin gallate (EGCG) on white and beige preadipocyte growth and explores the involvement of the miR-let-7a/HMGA2 pathway. METHODS AND RESULTS: 3T3-L1 and D12 cells are treated with EGCG. The effect of EGCG on cell proliferation and viability is evaluated, as well as microRNA (miRNA)-related signaling pathways. EGCG inhibits 3T3-L1 and D12 preadipocyte growth, upregulates miR-let-7a expression, and downregulates high-mobility group AT-hook 2 (HMGA2) mRNA and protein levels in a time- and dose-dependent manner. In addition, overexpression of miR-let-7a significantly inhibits the growth of 3T3-L1 and D12 cells and decreases HMGA2 mRNA and protein levels. MiR-let-7a inhibitor antagonizes the inhibitory effects of EGCG on the number and viability of 3T3-L1 and D12 cells. Furthermore, miR-let-7a inhibitor reverses the EGCG-induced increase in miR-let-7a expression levels and decrease in HMGA2 mRNA and protein levels. HMGA2 overexpression induces an increase in cell number and viability and antagonizes EGCG-suppressed cell growth and HMGA2 expression in 3T3-L1 and D12 preadipocytes. CONCLUSION: EGCG inhibits the growth of 3T3-L1 and D12 preadipocytes by modulating the miR-let-7a and HMGA2 pathways.


Assuntos
Catequina , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Chá , Transdução de Sinais , Proliferação de Células , Catequina/farmacologia , RNA Mensageiro
2.
Exp Biol Med (Maywood) ; 247(18): 1670-1679, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894140

RESUMO

Green tea epigallocatechin gallate (EGCG) and microRNA (miRNA) molecules modulate obesity. Nevertheless, it is still unknown whether EGCG modulates fat cell growth via miRNA-related signaling. In this study, white preadipocytes were used to examine whether the antimitogenic effect of EGCG on fat cells is regulated by the miR-143/MAPK7 pathway. We showed that EGCG upregulated the levels of miR-143, but not miR-155, in 3T3-L1 preadipocytes. Moreover, EGCG downregulated MAPK7 mRNA and protein levels time- and dose-dependently. MAPK7 expression increased during 3T3-L1 cell proliferation. miR-143 overexpression in the absence of EGCG mimicked the effects of EGCG to suppress preadipocyte growth and MAPK7 expression, whereas knockdown of miR-143 antagonized the EGCG-altered levels of miR-143, MAPK7, and pERK1/2 and reversed the EGCG-inhibited cell growth. These findings suggest that EGCG inhibits 3T3-L1 cell growth via miR-143/MAPK7 pathway.


Assuntos
Catequina , MicroRNAs , Camundongos , Animais , Células 3T3-L1 , Chá , Catequina/farmacologia , MicroRNAs/genética , RNA Mensageiro
3.
Front Endocrinol (Lausanne) ; 12: 661828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093437

RESUMO

Endothelins induce many biological responses, and they are composed of three peptides: ET-1, ET-2, and ET-3. Reports have indicated that ET-1 regulates cell proliferation, adipogenesis, and other cell responses and that ET-3 stimulates the growth of gastrointestinal epithelial cells and melanocytes. However, the signalling pathways of ET3 that mediate the growth of fat cells are still unclear. Using 3T3-L1 white preadipocytes, we found that ET-3 induced increases in both cell number and BrdU incorporation. Pretreatment with an ETAR antagonist (but not an ETBR antagonist) blocked the ET-3-induced increases in both cell number and BrdU incorporation. Additionally, BQ610 suppressed the ET-3-induced increases in phosphorylation of AMPK, c-JUN, and STAT3 proteins, and pretreatment with specific inhibitors of AMPK, JNK/c-JUN, or JAK/STAT3 prevented the ET-3-induced increases in phosphorylation of AMPK, c-JUN, and STAT3, respectively. Neither p38 MAPK inhibitor nor PKC inhibitor altered the effects of ET-3 on cell growth. These data suggest that ET-3 stimulates preadipocyte growth through the ETAR, AMPK, JNK/c-JUN, and STAT3 pathways. Moreover, ET-3 did not alter HIB1B brown preadipocyte and D12 beige preadipocyte growth, suggesting a preadipocyte type-dependent effect. The results of this study may help explain how endothelin mediates fat cell activity and fat cell-associated diseases.


Assuntos
Adipócitos/citologia , Endotelina-3/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proliferação de Células , Endotelina-3/antagonistas & inibidores , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
4.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287214

RESUMO

Prostate cancer (PCa) is a reproductive system cancer in elderly men. We investigated the effects of betel nut arecoline on the growth of normal and cancerous prostate cells. Normal RWPE-1 prostate epithelial cells, androgen-independent PC-3 PCa cells, and androgen-dependent LNCaP PCa cells were used. Arecoline inhibited their growth in dose- and time-dependent manners. Arecoline caused RWPE-1 and PC-3 cell cycle arrest in the G2/M phase and LNCaP cell arrest in the G0/G1 phase. In RWPE-1 cells, arecoline increased the expression of cyclin-dependent kinase (CDK)-1, p21, and cyclins B1 and D3, decreased the expression of CDK2, and had no effects on CDK4 and cyclin D1 expression. In PC-3 cells, arecoline decreased CDK1, CDK2, CDK4, p21, p27, and cyclin D1 and D3 protein expression and increased cyclin B1 protein expression. In LNCaP cells, arecoline decreased CDK2, CDK4, and cyclin D1 expression; increased p21, p27, and cyclin D3 expression; had no effects on CDK1 and cyclin B1 expression. The antioxidant N-acetylcysteine blocked the arecoline-induced increase in reactive oxygen species production, decreased cell viability, altered the cell cycle, and changed the cell cycle regulatory protein levels. Thus, arecoline oxidant exerts differential effects on the cell cycle through modulations of regulatory proteins.


Assuntos
Areca/química , Arecolina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Arecolina/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata
5.
Am J Physiol Cell Physiol ; 319(5): C839-C857, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755450

RESUMO

Endothelin (ET)-1 regulates adipogenesis and the endocrine activity of fat cells. However, relatively little is known about the ET-1 signaling pathway in preadipocyte growth. We used 3T3-L1 preadipocytes to investigate the signaling pathways involved in ET-1 modulation of preadipocyte proliferation. As indicated by an increased number of cells and greater incorporation of bromodeoxyuridine (BrdU), the stimulation of preadipocyte growth by ET-1 depends on concentration and timing. The concentration of ET-1 that increased preadipocyte number by 51-67% was ~100 nM for ~24-48 h of treatment. ET-1 signaling time dependently stimulated phosphorylation of ERK, c-JUN, STAT3, AMPK, and PKCα/ßII proteins but not AKT, JNK, or p38 MAPK. Treatment with an ETAR antagonist, such as BQ610, but not ETBR antagonist BQ788, blocked the ET-1-induced increase in cell proliferation and phosphorylated levels of ERK, c-JUN, STAT3, AMPK, and PKCα/ßII proteins. In addition, pretreatment with specific inhibitors of ERK1/2 (U0126), JNK (SP600125), JAK2/STAT3 (AG490), AMPK (compound C), or PKC (Ro318220) prevented the ET-1-induced increase in cell proliferation and reduced the ET-1-stimulated phosphorylation of ERK1/2, c-JUN, STAT3, AMPK, and PKCα/ß. Moreover, the SphK antagonist suppressed ET-1-induced cell proliferation and ERK, c-JUN, STAT3, AMPK, and PKC phosphorylation, and the SMase2 antagonist suppressed ET-1-induced cell proliferation. However, neither the p38 MAPK antagonist nor the CerS inhibitor altered the effect of ET-1. The results indicate that ETAR, JAK2/STAT3, ERK1/2, JNK/c-JUN, AMPK, PKC, SphK, and SMase2, but not ETBR, p38 MAPK, or CerS, are necessary for the ET-1 stimulation of preadipocyte proliferation.


Assuntos
Adipócitos/efeitos dos fármacos , Endotelina-1/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteína Quinase C/genética , Fator de Transcrição STAT3/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Butadienos/farmacologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antagonistas dos Receptores de Endotelina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Nitrilas/farmacologia , Oligopeptídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piperidinas/farmacologia , Proteína Quinase C/metabolismo , Piridinas/farmacologia , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
PLoS One ; 13(7): e0200508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30011295

RESUMO

The present study was designed to investigate the pathways involved in the effect of betel nut arecoline on cell viability in 3T3-L1 preadipocytes. Arecoline, but not arecaidine or guvacine, inhibited preadipocyte viability in a concentration- and time-dependent manner. Arecoline arrested preadipocyte growth in the G2/M phase of the cell cycle; decreased the total levels of cyclin-dependent kinase 1 (CDK1), p21, and p27 proteins; increased p53 and cyclin B1 protein levels; and had no effect on CDK2 protein levels. These results suggested that arecoline selectively affected a particular CDK subfamily. Arecoline inhibited AMP-activated protein kinase (AMPK) activity; conversely, the AMPK activator, AICAR, blocked the arecoline-induced inhibition of cell viability. Pre-treatment with the antioxidant, N-acetylcysteine, prevented the actions of arecoline on cell viability, G2/M growth arrest, reactive oxygen species (ROS) production, and the levels of CDK1, p21, p27, p53, cyclin B1, and phospho-AMPK proteins. These AMPK- and ROS-dependent effects of arecoline on preadipocyte growth may be related to the mechanism underlying the modulatory effect of arecoline on body weight.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Arecolina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Proteínas de Ciclo Celular/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos
7.
Gen Comp Endocrinol ; 199: 46-55, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24486085

RESUMO

This study investigated the pathways involved in EGCG modulation of insulin-like growth factor (IGF)-stimulated glucose uptake in 3T3-L1 adipocytes. EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake with dose and time dependencies. EGCG at 20µM for 2h decreased IGF-I- and IGF-II-stimulated glucose uptake by 59% and 64%, respectively. Pretreatment of adipocytes with antibody against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), prevented the effects of EGCG on IGF-increased glucose uptake, but pretreatment with normal rabbit immunoglobulin did not. This suggests that the 67LR mediates the anti-IGF effect of EGCG on adipocyte glucose uptake. Further analysis indicated EGCG, IGF-I, and IGF-II did not alter total levels of GLUT1 or GLUT4 protein. However, EGCG prevented the IGF-increased GLUT4 levels in the plasma membrane and blocked the IGF-decreased GLUT4 levels in low-density microsomes. Neither EGCG nor its combination with IGF altered GLUT1 protein levels in the plasma membrane and low-density microsomes. EGCG also suppressed the IGF-stimulated phosphorylation of IGF signaling molecules, PKCζ/λ, but not AKT and ERK1/2, proteins. This study suggests that EGCG suppresses IGF stimulation of 3T3-L1 adipocyte glucose uptake through inhibition of the GLUT4 translocation, but not through alterations of the GLUT1 pathway.


Assuntos
Adipócitos/metabolismo , Catequina/análogos & derivados , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Chá/química , Células 3T3-L1 , Acetilcisteína/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Anticorpos/metabolismo , Catequina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transporte Proteico , Receptores de Laminina/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Endocrinology ; 155(3): 854-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424064

RESUMO

Resistin and endothelin (ET)-1 have been reported to inhibit adipogenesis and regulate adipocyte insulin resistance, respectively. Although both hormones interact with each other, the exact signaling pathway of ET-1 to act on resistin gene expression is still unknown. Using 3T3-L1 adipocytes, we investigated the signaling pathways involved in ET-1-stimulated resistin gene expression. The up-regulation of resistin mRNA expression by ET-1 depends on concentration and timing. The concentration of ET-1 that increased resistin mRNA levels by 100%-250% was approximately 100 nM for a range of 0.25-12 hours of treatment. Treatment with actinomycin D blocked ET-1-increased resistin mRNA levels, suggesting that the effect of ET-1 requires new mRNA synthesis. Treatment with an inhibitor of the ET type-A receptor, such as N-[1-Formyl-N-[N-[(hexahydro-1H-azepin-1-yl)carbonyl]-L-leucyl]-D-tryptophyl]-D-tryptophan (BQ610), but not with the ET type-B receptor antagonist N-[(cis-2,6-Dimethyl-1-piperidinyl)carbonyl]-4-methyl-L-leucyl-1-(methoxycarbonyl)-D-tryptophyl-D-norleucine (BQ788), blocked ET-1, increased the levels of resistin mRNA, and phosphorylated levels of downstream signaling molecules, such as ERK1/2, c-Jun N-terminal kinases (JNKs), protein kinase B (AKT), and signal transducer and activator of transcription 3 (STAT3). Moreover, pretreatment of specific inhibitors of either ERK1/2 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene [U0126] and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one [PD98059], two inhibitors of MEK1), JNKs (SP600125), phosphatidylinositol 3-kinase/AKT (LY294002 and Wortmannin), or Janus kinase 2 (JAK2)/STAT3 ((E)-2-Cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide, AG490) prevented ET-1-increased levels of resistin mRNA and reduced the ET-1-stimulated phosphorylation of ERK1/2, JNKs, AKT, and STAT3, respectively. However, the p38 kinase antagonist 4-[5-(4-Fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-yl]pyridine (SB203580) did not alter the effect of ET-1. These results imply that ET type-A receptor, ERK1/2, JNKs, AKT, and JAK2, but not ET type-B receptor or p38, are necessary for the ET-1 stimulation of resistin gene expression. In vivo observations that ET-1 increased resistin mRNA and protein levels in sc and epididymal adipose tissues support the in vitro findings.


Assuntos
Endotelina-1/metabolismo , Regulação da Expressão Gênica , Resistina/metabolismo , Transdução de Sinais , Células 3T3-L1 , Tecido Adiposo/metabolismo , Androstadienos/química , Animais , Antracenos/química , Butadienos/química , Cromonas/química , Dactinomicina/metabolismo , Flavonoides/química , Perfilação da Expressão Gênica , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/química , Nitrilas/química , Oligopeptídeos/química , Piperidinas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Tirfostinas/química , Wortmanina
9.
Gen Comp Endocrinol ; 178(3): 450-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22766240

RESUMO

Endothelin (ET)-1 and suppressor of cytokine signaling (SOCS)-3 were respectively found to regulate energy metabolism and hormone signaling in fat cells. Although ET-1 can also regulate the expression of SOCS-3-stimulating hormones, it is still unknown whether ET-1 regulates SOCS-3 gene expression. This study investigated the pathways involved in ET-1's modulation of SOCS-3 gene expression in 3T3-L1 adipocytes. ET-1 upregulated SOCS-3 mRNA and protein expression in dose- and time-dependent manners. The concentration of ET-1 that increased SOCS-3 mRNA levels by 250-400% was ∼100nM with 2-4h of treatment. Treatment with actinomycin D prevented ET-1-stimulated SOCS-3 mRNA expression, suggesting that the effect of ET-1 requires new mRNA synthesis. Pretreatment with the ET type A receptor (ET(A)R) antagonist, BQ-610, but not the ET type B receptor (ET(B)R) antagonist, BQ-788, prevented the stimulatory effect of ET-1 on SOCS-3 gene expression. The specific inhibitors of either MEK1 (U-0126 and PD-98059), JAK (AG-490), JNK (SP-600125), or PI3K (LY-294002 and wortmannin) reduced ET-1-increased levels of SOCS-3 mRNA and respectively inhibited ET-1-stimulated activities of MEK1, JAK, JNK, and PI3K. These results imply that the ET(A)R, ERK, JAK, JNK, and PI3K are functionally necessary for ET-1's stimulation of SOCS-3 gene expression. Moreover, ET-1 was observed to upregulate expressions of SOCS-1, -2, -3, -4, -5, and -6 mRNAs, but not SOCS-7 or cytokine-inducible SH2-containing protein-1 mRNAs. This suggests that ET-1 selectively affects particular types of SOCS family members. Changes in SOCS gene expressions induced by ET-1 may help explain the mechanism by which ET-1 modulates hormone signaling of adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Endotelina-1/farmacologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células 3T3-L1 , Animais , Western Blotting , Camundongos , Reação em Cadeia da Polimerase , Proteínas Supressoras da Sinalização de Citocina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA