RESUMO
Defective interfering particles (DIPs) of influenza A virus (IAV) are suggested for use as broad-spectrum antivirals. We discovered a new type of IAV DIP named "OP7" that carries point mutations in its genome segment (Seg) 7 instead of a deletion as in conventional DIPs (cDIPs). Recently, using genetic engineering tools, we generated "OP7 chimera DIPs" that carry point mutations in Seg 7 plus a deletion in Seg 1. Together with cDIPs, OP7 chimera DIPs were produced in shake flasks in the absence of infectious standard virus (STV), rendering UV inactivation unnecessary. However, only part of the virions harvested were OP7 chimera DIPs (78.7%) and total virus titers were relatively low. Here, we describe the establishment of an OP7 chimera DIP production process applicable for large-scale production. To increase total virus titers, we reduced temperature from 37 to 32 °C during virus replication. Production of almost pure OP7 chimera DIP preparations (99.7%) was achieved with a high titer of 3.24 log10(HAU/100 µL). This corresponded to an 11-fold increase relative to the initial process. Next, this process was transferred to a stirred tank bioreactor resulting in comparable yields. Moreover, DIP harvests purified and concentrated by steric exclusion chromatography displayed an increased interfering efficacy in vitro. Finally, a perfusion process with perfusion rate control was established, resulting in a 79-fold increase in total virus yields compared to the original batch process in shake flasks. Again, a very high purity of OP7 chimera DIPs was obtained. This process could thus be an excellent starting point for good manufacturing practice production of DIPs for use as antivirals. KEY POINTS: ⢠Scalable cell culture-based process for highly effective antiviral OP7 chimera DIPs ⢠Production of almost pure OP7 chimera DIPs in the absence of infectious virus ⢠Perfusion mode production and purification train results in very high titers.
Assuntos
Vírus Defeituosos , Vírus da Influenza A , Salicilatos , Vírus Defeituosos/genética , Vírus da Influenza A/genética , Replicação Viral , Antivirais/farmacologiaRESUMO
New broadly acting and readily available antiviral agents are needed to combat existing and emerging viruses. Defective interfering particles (DIPs) of influenza A virus (IAV) are regarded as promising options for the prevention and treatment of IAV infections. Interestingly, IAV DIPs also inhibit unrelated viral infections by stimulating antiviral innate immunity. Here, we tested the ability of IAV DIPs to suppress respiratory syncytial, yellow fever and Zika virus infections in vitro. In human lung (A549) cells, IAV DIP co-infection inhibited the replication and spread of all three viruses. In contrast, we observed no antiviral activity in Vero cells, which are deficient in the production of interferon (IFN), demonstrating its importance for the antiviral effect. Further, in A549 cells, we observed an enhanced type-I and type-III IFN response upon co-infection that appears to explain the antiviral potential of IAV DIPs. Finally, a lack of antiviral activity in the presence of the Janus kinase 1/2 (JAK1/2) inhibitor ruxolitinib was detected. This revealed a dependency of the antiviral activity on the JAK/signal transducers and activators of transcription (STAT) signaling pathway. Overall, this study supports the notion that IAV DIPs may be used as broad-spectrum antivirals to treat infections with a variety of IFN-sensitive viruses, particularly respiratory viruses.
Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Humanos , Células Vero , Antivirais/farmacologia , Antivirais/metabolismo , Vírus Defeituosos Interferentes , Replicação Viral , Infecção por Zika virus/tratamento farmacológicoRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) emerged in late 2019 and resulted in a devastating pandemic. Although the first approved vaccines were already administered by the end of 2020, worldwide vaccine availability is still limited. Moreover, immune escape variants of the virus are emerging against which the current vaccines may confer only limited protection. Further, existing antivirals and treatment options against COVID-19 show only limited efficacy. Influenza A virus (IAV) defective interfering particles (DIPs) were previously proposed not only for antiviral treatment of the influenza disease but also for pan-specific treatment of interferon (IFN)-sensitive respiratory virus infections. To investigate the applicability of IAV DIPs as an antiviral for the treatment of COVID-19, we conducted in vitro co-infection experiments with cell culture-derived DIPs and the IFN-sensitive SARS-CoV-2 in human lung cells. We show that treatment with IAV DIPs leads to complete abrogation of SARS-CoV-2 replication. Moreover, this inhibitory effect was dependent on janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. Further, our results suggest boosting of IFN-induced antiviral activity by IAV DIPs as a major contributor in suppressing SARS-CoV-2 replication. Thus, we propose IAV DIPs as an effective antiviral agent for treatment of COVID-19, and potentially also for suppressing the replication of new variants of SARS-CoV-2.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Imunidade Inata/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Vírus Defeituosos/imunologia , Humanos , Vírus da Influenza A/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
Virus replication displays a large cell-to-cell heterogeneity; yet, not all sources of this variability are known. Here, we study the effect of defective interfering (DI) particle (DIP) co-infection on cell-to-cell variability in influenza A virus (IAV) replication. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNA) and are, thus, defective in virus replication. Moreover, they interfere with virus replication. Using single-cell isolation and reverse transcription polymerase chain reaction, we uncovered a large between-cell heterogeneity in the DI vRNA content of infected cells, which was confirmed for DI mRNAs by single-cell RNA sequencing. A high load of intracellular DI vRNAs and DI mRNAs was found in low-productive cells, indicating their contribution to the large cell-to-cell variability in virus release. Furthermore, we show that the magnitude of host cell mRNA expression (some factors may inhibit virus replication), but not the ribosome content, may further affect the strength of single-cell virus replication. Finally, we show that the load of viral mRNAs (facilitating viral protein production) and the DI mRNA content are, independently from one another, connected with single-cell virus production. Together, these insights advance single-cell virology research toward the elucidation of the complex multi-parametric origin of the large cell-to-cell heterogeneity in virus infections.
Assuntos
Vírus Defeituosos/genética , Variação Genética , Vírus da Influenza A/genética , RNA Viral/genética , Análise de Célula Única , Replicação Viral , Animais , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim CaninoRESUMO
Influenza A viruses (IAV) are commonly used to infect animal cell cultures for research purposes and vaccine production. Their replication is influenced strongly by the multiplicity of infection (MOI), which ranges over several orders of magnitude depending on the respective application. So far, mathematical models of IAV replication have paid little attention to the impact of the MOI on infection dynamics and virus yields. To address this issue, we extended an existing model of IAV replication in adherent MDCK cells with kinetics that explicitly consider the time point of cell infection. This modification does not only enable the fitting of high MOI measurements, but also the successful prediction of viral release dynamics of low MOI experiments using the same set of parameters. Furthermore, this model allows the investigation of defective interfering particle (DIP) propagation in different MOI regimes. The key difference between high and low MOI conditions is the percentage of infectious virions among the total virus particle release. Simulation studies show that DIP interference at a high MOI is determined exclusively by the DIP content of the seed virus while, in low MOI conditions, it is predominantly controlled by the de novo generation of DIPs. Overall, the extended model provides an ideal framework for the prediction and optimization of cell culture-derived IAV manufacturing and the production of DIPs for therapeutic use.
Assuntos
Vírus da Influenza A , Modelos Biológicos , Infecções por Orthomyxoviridae/virologia , Replicação Viral/fisiologia , Animais , Apoptose , Cães , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Biologia de SistemasRESUMO
Defective interfering particles (DIPs) replicate at the expense of coinfecting, fully infectious homologous virus. Typically, they contain a highly deleted form of the viral genome. Utilizing single-cell analysis, here we report the discovery of a yet-unknown DIP type, derived from influenza A viruses (IAVs), termed OP7 virus. Instead of deletions, the genomic viral RNA (vRNA) of segment 7 (S7) carried 37 point mutations compared to the reference sequence, affecting promoter regions, encoded proteins, and genome packaging signals. Coinfection experiments demonstrated strong interference of OP7 virus with IAV replication, manifested by a dramatic decrease in the infectivity of released virions. Moreover, an overproportional quantity of S7 in relation to other genome segments was observed, both intracellularly and in the released virus population. Concurrently, OP7 virions lacked a large fraction of other vRNA segments, which appears to constitute its defect in virus replication. OP7 virus might serve as a promising candidate for antiviral therapy. Furthermore, this novel form of DIP may also be present in other IAV preparations.IMPORTANCE Defective interfering particles (DIPs) typically contain a highly deleted form of the viral genome, rendering them defective in virus replication. Yet upon complementation through coinfection with fully infectious standard virus (STV), interference with the viral life cycle can be observed, leading to suppressed STV replication and the release of mainly noninfectious DIPs. Interestingly, recent research indicates that DIPs may serve as an antiviral agent. Here we report the discovery of a yet-unknown type of influenza A virus-derived DIP (termed "OP7" virus) that contains numerous point mutations instead of large deletions in its genome. Furthermore, the underlying principles that render OP7 virions interfering and apparently defective seem to differ from those of conventional DIPs. In conclusion, we believe that OP7 virus might be a promising candidate for antiviral therapy. Moreover, it exerts strong effects, both on virus replication and on the host cell response, and may have been overlooked in other IAV preparations.