Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bull Exp Biol Med ; 174(2): 185-189, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36602600

RESUMO

Changes in indicators of heart rate variability after a single injection of serotonin (200 µg/kg) or dopamine (60 µg/kg) were analyzed in male non-linear rats at rest and during acute stress. At rest, administration of serotonin is accompanied by an increase in the role of the vasomotor center in the formation of heart rate variability; administration of dopamine causes a moderate weakening of HF waves. In both cases, no sharp shifts in the sympathetic-parasympathetic relations are seen, but a more variable rhythm is formed under the effect of serotonin. Under conditions of acute stress, the increase in HR after injection of serotonin is half as much as in the control series, a trend towards weakening of the power of VLF- and even LF-waves is observed. After dopamine injection, a sharp increase in HR and strain index and a decrease in the power of waves of all spectral ranges and the centralization index are observed at the beginning of stress, but by the 30th min, tachycardia becomes moderate, the powers of all waves are restored; HF waves dominate in the spectrum, but potentiation of VLF- and LF-waves and growth of the centralization index are not observed in contrast to the control series. In general, serotonin and dopamine exhibit stress-limiting properties and moderate activation of sympathoadrenal influences and the suprasegmental level of regulation under stress conditions, but after dopamine injection we observed increased reactivity at the beginning of stress and less variable HR. Therefore, serotonin has more pronounced stress limiting effects, which can be revealed by heart rate variability analysis.


Assuntos
Dopamina , Serotonina , Ratos , Animais , Masculino , Frequência Cardíaca/fisiologia , Dopamina/farmacologia , Serotonina/farmacologia , Eletrocardiografia
2.
Bull Exp Biol Med ; 170(5): 585-589, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33792819

RESUMO

General anesthesia with Nembutal (40 mg/kg) dramatically decreased the power of all waves of HRV spectrum in rats, especially in LF and VLF frequency bands, but the HR and respiration rate were little changed. At this, individual spectral peaks in HF range were observed at the same frequencies (1.3-1.5 Hz), which are characteristic of the wakeful state. Preliminary stimulation of noradrenergic system with maprotiline (10 mg/kg) increased the power of HF waves and elevated the respiratory rate in narcotized rats in comparison with the control values, although it did not shift the spectral peak at 1.5 Hz in frequency axis. Preliminary stimulation of cholinergic system with galantamine (2 mg/kg) somewhat decreased the power of HF waves and respiratory rate in narcotized rats (in comparison with the control values); additionally, it shifted HF peak to 1.1-1.4 Hz. Activation of serotonergic system with 5-hydroxytryptophan (50 mg/kg) and fluoxetine (3 mg/kg) decreased the HR, the power of HF waves, and respiratory rate in narcotized rats. It also shifted the spectral peak of HF waves to 0.9-0.95 Hz. Preliminary stimulation of dopaminergic system with L-DOPA (20 ml/kg) and amantadine (20 ml/kg) increased the power of VLF waves in narcotized rats in comparison with the control values. Numerous peaks appeared in HF (1.1-1.2 Hz) and VLF frequency bands. Generally, preliminary stimulation of serotonergic or dopaminergic systems markedly affects the neural activity under following general anesthesia: first aggravates the effect of anesthesia on vital centers in CNS, whereas second weakens the effect of anesthesia at the suprasegmental level of neural control.


Assuntos
Neurônios Adrenérgicos/fisiologia , Frequência Cardíaca/fisiologia , Anestesia , Animais , Masculino , Neurotransmissores/metabolismo , Ratos , Receptores de Neurotransmissores/metabolismo , Taxa Respiratória/fisiologia
3.
Bull Exp Biol Med ; 168(2): 193-198, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31776959

RESUMO

Stimulation of the serotoninergic system (5-hydroxytryptophan, 50 mg/kg; fluoxetine, 3 mg/kg) induced a significant increase in HR and a reduction in the amplitude of all waves of the heart rhythm variability. Stimulation of the dopaminergic system (L-DOPA and amantadine, 20 mg/kg each) resulted in a moderate increase in HR and amplitudes of low-frequency (LF) and very-low-frequency (VLF) waves of the heart rhythm variability. Successive blockade of nicotinic (hexamethonium, 7 mg/kg) and muscarinic cholinergic receptors (atropine, 1 mg/kg) leads to a significant decrease in the variability of cardiointervals (almost to complete levelling) both under control conditions and after stimulation of the neurotransmitter systems. Serotonin receptor blockade (promethazine, 2 mg/kg) did not affect HR, but reduced the amplitude of LF- and VLF-waves. Under conditions of serotoninergic system stimulation, the blockade of serotonin receptors was followed by a significant HR acceleration without changes in heart rhythm variability; blockade of dopamine receptors (sulpiride, 1 mg/kg) induced HR acceleration and increase in the amplitude of LF- and VLF-waves; blockade of dopamine receptors under conditions of dopamine system stimulation was followed by a significant increase in HR and a decrease in the amplitude of all waves of the heart rhythm variability. It can be hypothesized that serotonin- and dopaminergic systems affect the heart rhythm via cardiomyocyte receptors and via modulation of activity of the adrenergic and cholinergic systems. The effects of serotonin- and dopaminergic systems can be considered as synergic in the CNS, and antagonistic at the periphery.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Neurotransmissores/farmacologia , Receptores de Neurotransmissores/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Animais , Colina/antagonistas & inibidores , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Ratos , Receptores Dopaminérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Receptores de Serotonina/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
4.
Bull Exp Biol Med ; 165(5): 597-601, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30225714

RESUMO

Single injection of muscarinic cholinoceptor blocker atropine (1 mg/kg) to outbred male rats reduced ß-adrenergic responsiveness of erythrocytes (by 2.2 times) and the content of epinephrine granules on erythrocytes (by 1.5 times), significantly increased HR and rigidity of the heart rhythm, and manifold decreased the power of all spectral components of heart rhythm variability. Stimulation of the central neurotransmitter systems increased ß-adrenergic responsiveness of erythrocytes (by 15-26%), decreased the number of epinephrine granules on erythrocytes (by 25-40%), and increased HR and cardiac rhythm intensity. These changes were most pronounced after stimulation of the serotoninergic system. Administration of atropine against the background of activation of central neurotransmitter systems did not decrease ß-adrenergic responsiveness of erythrocytes (this parameter remained at a stably high level and even increased during stimulation of the dopaminergic system), but decreased the number of epinephrine granules on erythrocytes, increased HR, and dramatically decreased the power of all components of heart rhythm variability spectrum. The response to atropine was maximum against the background of noradrenergic system activation and less pronounced during stimulation of the serotoninergic system. Thus, substances that are complementary to cholinergic receptors modulated adrenergic effect on the properties of red blood cells, which, in turn, can modulate the adrenergic influences on the heart rhythm via the humoral channel of regulation. Stimulation of central neurotransmitter systems that potentiates the growth of visceral adrenergic responsiveness weakens the cholinergic modulation of the adrenergic influences, especially with respect to erythrocyte responsiveness. Hence, changes in the neurotransmitter metabolism in the body can lead to coupled modulation of reception and reactivity to adrenergic- and choline-like regulatory factors at the level of erythrocyte membranes, which can be important for regulation of heart rhythm.


Assuntos
Atropina/farmacologia , Eritrócitos/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/metabolismo , Acetilcolina/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Animais não Endogâmicos , Cardiotônicos/farmacologia , Agonistas Colinérgicos/farmacologia , Dopamina/farmacologia , Epinefrina/farmacologia , Eritrócitos/metabolismo , Coração/fisiologia , Frequência Cardíaca/fisiologia , Maprotilina/farmacologia , Norepinefrina/farmacologia , Ratos
5.
Bull Exp Biol Med ; 163(3): 302-306, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744642

RESUMO

The effects of intraperitoneal DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, a noradrenergic neurotoxin) and maprotiline (an inhibitor of norepinephrine reuptake in synapses) on spectral components of heart rhythm variability were examined in outbred male and female rats treated with these agents in daily doses of 10 mg/kg for 3 days. At rest, DSP-4 elevated LF and VLF spectral components in male and female rats. Maprotiline elevated LF and VLF components in males at rest, increased HR and reduced all spectral components in resting females. Stress against the background of DSP-4 treatment sharply increased heart rate and reduced the powers of all spectral components (especially LF and VLF components). In maprotiline-treated rats, stress increased the powers of LF and VLF components. Thus, the central noradrenergic system participates in the formation of LF and VLF spectral components of heart rate variability at rest and especially during stressful stimulation, which can determine the phasic character of changes in the heart rate variability observed in stressed organism.


Assuntos
Benzilaminas/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Maprotilina/farmacologia , Neurotoxinas/farmacologia , Inibidores da Captação de Neurotransmissores/farmacologia , Neurônios Adrenérgicos/citologia , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Animais não Endogâmicos , Esquema de Medicação , Eletrocardiografia , Feminino , Coração/fisiopatologia , Injeções Intraperitoneais , Masculino , Ratos , Descanso , Estresse Fisiológico
6.
Bull Exp Biol Med ; 163(1): 31-36, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28577106

RESUMO

We studied heart rate variability and ß-adrenergic responsiveness of erythrocytes and changes in these parameters in response to single administration of ß-adrenoblocker propranolol (2 mg/kg) in outbred male rats against the background of activation of the noradrenergic, serotonergic, and dopaminergic neurotransmitter systems achieved by 4-fold injections maprotiline (10 mg/kg), 5-hydroxytryptophan (50 mg/kg) combined with fluoxetine (3 mg/kg), and L-DOPA (20 mg/kg) with amantadine (20 mg/kg), respectively. Stimulation of the noradrenergic system moderately enhanced the heart rhythm rigidity and ß-adrenergic responsiveness of erythrocytes. In addition, it markedly augmented the moderating effect of subsequently administered propranolol on LF and VLF components in the heart rate variability and reversed the effect of propranolol on ß-adrenergic responsiveness of erythrocytes. Stimulation of the serotonergic system dramatically decreased all components in the heart rate variability and pronouncedly enhanced ß-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol slightly restored all components in the heart rate variability and decreased ß-adrenergic responsiveness of erythrocytes to the control level. Stimulation of the dopaminergic system made the heart rate more rigid due to decrease of all components in the heart rate variability; in addition, it slightly but significantly enhanced ß-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol produced no significant effects on all components in the heart rate variability and on ß-adrenergic responsiveness of erythrocytes. Stimulation of noradrenergic, serotonergic, and dopaminergic neurotransmitter systems produced unidirectional and consorted effects on heart rate variability and ß-adrenergic responsiveness of erythrocytes, although the magnitudes of these effects were different. Probably, the changes in the heart rate variability in rats with stimulated neurotransmitter systems results from modification of the cellular sensitivity in peripheral organs to adrenergic influences. However, the differences in the reactions to ß-adrenoblocker attest to specificity of the mechanisms underlying the changes in membrane reception and adrenergic pathways in every experimental model employed in this study.


Assuntos
Eritrócitos/metabolismo , Frequência Cardíaca/fisiologia , Neurotransmissores/metabolismo , Adrenérgicos/farmacologia , Animais , Dopamina/farmacologia , Epinefrina/metabolismo , Eritrócitos/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Isoproterenol/farmacologia , Masculino , Norepinefrina/metabolismo , Propranolol/farmacologia , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo
7.
Bull Exp Biol Med ; 160(2): 183-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26621279

RESUMO

The basic behavioral activity of nonlinear rats was evaluated from the sum of crossed peripheral and central squares and peripheral and central rearing postures in the open fi eld test. This index was low (<20 episodes), intermediate (20-29 episodes), or high (>30 episodes). Male rats with high score of orientation and exploratory activity were characterized by higher indexes of total heart rate variability than rats with low or intermediate activity. Specimens with a greater contribution of VLF waves into the total power spectrum of heart rate variability were shown to dominate among the rats with high behavioral activity. Our results are consistent with the notions of a suprasegmental nature of VLF waves.


Assuntos
Frequência Cardíaca/fisiologia , Animais , Eletrocardiografia , Comportamento Exploratório/efeitos dos fármacos , Masculino , Orientação/efeitos dos fármacos , Ratos
8.
Bull Exp Biol Med ; 157(3): 311-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25065307

RESUMO

Changes in heart rhythm variability were studied in male and female mature and 5-6-week-old rats under conditions of 7-day administration of ß1-adrenoreceptor blocker atenolol (2.5 mg/kg) and α1-adrenoreceptor agonist phenylephrine (0.3 mg/kg). Atenolol administration to mature rats was followed by a slight deceleration of cardiac rhythm, a tendency to heart rate variability decrease in the HF range, and moderate increase in centralization of regulation. In 6-week-old rats, increased variability of cardiointervals and significant increase of centralization of the heart rhythm regulation due to an increase in the power of low-frequency waves (specifically VLF) were observed. In both mature and young rats, changes of heart rate frequency and variability in response to atenolol administration were more pronounced in females. Phenylephrine administration was followed by a significant heart rate deceleration, increase in cardiointerval variability and centralization of heart rate regulation in mature rats and by a decrease in heart rate variability in all frequency ranges in 6-week-old rats. In mature rats, changes in heart rate frequency and variability produced by phenylephrine administration were more pronounced in males; in young rats, the most strained heart rhythm developed in females.


Assuntos
Frequência Cardíaca , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Fatores Etários , Animais , Animais não Endogâmicos , Atenolol/farmacologia , Feminino , Masculino , Contração Miocárdica/efeitos dos fármacos , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Caracteres Sexuais
9.
Bull Exp Biol Med ; 147(1): 15-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19526120

RESUMO

Heart rate variability was examined in random-bred albino rats at rest. The rats were clusterized according to activity of autonomic contour of heart rate control. Combination of factor and cluster analyses enhanced informative value of spectrum parameters of the heart rate variability in nonlinear rats grouped by initial neurovegetative status. The contours of central and autonomic regulation describe the most general features of the control influences that realize modulating influences at the heart level via sympathetic and parasympathetic control pathways. Their activity is comprehensively assessed by the normalized power spectrum of variations in the heart rate.


Assuntos
Frequência Cardíaca , Animais , Análise por Conglomerados , Eletrocardiografia , Feminino , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA