Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nutrients ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398791

RESUMO

Non-alcoholic fatty liver disease (NAFLD), a significant cause of chronic liver disease, presents a considerable public health concern. Despite this, there is currently no treatment available. This study aimed to investigate dietary flaxseed in the JCR:LA-corpulent rat strain model of NAFLD. Both obese male and female rats were studied along with their lean counterparts after 12 weeks of ingestion of a control diet, or control diet with flaxseed, or high fat, high sucrose (HFHS), or HFHS plus flaxseed. Obese rats showed higher liver weight and increased levels of cholesterol, triglyceride, and saturated fatty acid, which were further elevated in rats on the HFHS diet. The HFHS diet induced a significant two-fold elevation in the plasma levels of both aspartate aminotransferase and alanine aminotransferase in the obese male and female rats. Including flaxseed in the HFHS diet significantly lowered liver weight, depressed the plasma levels of both enzymes in the obese male rats, and reduced hepatic cholesterol and triglyceride content as well as improving the fatty acid profile. In summary, including flaxseed in the diet of male and female obese rats led to an improved lipid composition in the liver and significantly reduced biomarkers of tissue injury despite consuming a HFHS chow.


Assuntos
Linho , Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Feminino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Fígado , Dieta , Triglicerídeos , Colesterol , Obesidade , Ácidos Graxos , Dieta Hiperlipídica
2.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003687

RESUMO

Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.


Assuntos
Insuficiência Cardíaca , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio , Isquemia Miocárdica , Masculino , Humanos , Idoso , Precondicionamento Isquêmico Miocárdico/métodos , Coração , Isquemia , Insuficiência Cardíaca/terapia
3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569850

RESUMO

Molecular hydrogen (H2) has been recognized as a novel medical gas with antioxidant and anti-inflammatory effects. Non-alcoholic fatty liver disease (NAFLD) is a liver pathology with increased fat accumulation in liver tissue caused by factors other than alcohol consumption. Platelet mitochondrial function is considered to reflect systemic mitochondrial health. We studied the effect of adjuvant therapy with hydrogen-rich water (HRW) on coenzyme Q10 (CoQ10) content and platelet mitochondrial bioenergetics in patients with NAFLD. A total of 30 patients with NAFLD and 15 healthy volunteers were included in this clinical trial. A total of 17 patients (H2 group) drank water three × 330 mL/day with tablets producing HRW (>4 mg/L H2) for 8 weeks, and 13 patients (P group) drank water with placebo tablets producing CO2. The concentration of CoQ10-TOTAL was determined by the HPLC method, the parameter of oxidative stress, thiobarbituric acid reactive substances (TBARS), by the spectrophotometric method, and mitochondrial bioenergetics in platelets isolated from whole blood by high-resolution respirometry. The patients with NAFLD had lower concentrations of CoQ10-TOTAL in the blood, plasma, and platelets vs. the control group. Mitochondrial CI-linked LEAK respiration was higher, and CI-linked oxidative phosphorylation (OXPHOS) and CII-linked electron transfer (ET) capacities were lower vs. the control group. Plasma TBARS concentrations were higher in the H2 group. After 8 weeks of adjuvant therapy with HRW, the concentration of CoQ10 in platelets increased, plasma TBARS decreased, and the efficiency of OXPHOS improved, while in the P group, the changes were non-significant. Long-term supplementation with HRW could be a promising strategy for the acceleration of health recovery in patients with NAFLD. The application of H2 appears to be a new treatment strategy for targeted therapy of mitochondrial disorders. Additional and longer-term studies are needed to confirm and elucidate the exact mechanisms of the mitochondria-targeted effects of H2 therapy in patients with NAFLD.

4.
Can J Physiol Pharmacol ; 101(10): 502-508, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463517

RESUMO

Cardiac surgery-associated acute kidney injury is a common post-operative complication, mostly due to increasing oxidative stress. Recently, molecular hydrogen (H2 gas) has also been applied to cardiac surgery due to its ability to reduce oxidative stress. We evaluated the potential effect of H2 application on the kidney in an in vivo model of simulated heart transplantation. Pigs underwent cardiac surgery within 3 h while connected to extracorporeal circulation (ECC) and subsequent 60 min of spontaneous reperfusion of the heart. We used two experimental groups: T-pigs after transplantation and TH-pigs after transplantation treated with 4% H2 mixed with air during inhalation of anesthesia and throughout oxygenation of blood in ECC. The levels of creatinine, urea and phosphorus were measured in plasma. Renal tissue samples were analyzed by Western blot method for protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), and superoxide dismutase (SOD1). After cardiac surgery, selected plasma biomarkers were elevated. However, H2 therapy was followed by the normalization of all these parameters. Our results suggest activation of Nrf2/Keap1 pathway as well as increased SOD1 protein expression in the group treated with H2. The administration of H2 had a protective effect on the kidneys of pigs after cardiac surgery, especially in terms of normalization of plasma biomarkers to control levels.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Animais , Suínos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Rim , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Superóxido Dismutase/metabolismo , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Hidrogênio/metabolismo , Biomarcadores/metabolismo
5.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119534, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399908

RESUMO

Necroptosis, a cell death modality that is defined as a necrosis-like cell death depending on the receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL), has been found to underlie the injury of various organs. Nevertheless, the molecular background of this cell loss seems to also involve, at least under certain circumstances, some novel axes, such as RIPK3-PGAM5-Drp1 (mitochondrial protein phosphatase 5-dynamin-related protein 1), RIPK3-CaMKII (Ca2+/calmodulin-dependent protein kinase II) and RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2 Interacting Protein 3). In addition, endoplasmic reticulum stress and oxidative stress via the higher production of reactive oxygen species produced by the mitochondrial enzymes and the enzymes of the plasma membrane have been implicated in necroptosis, thereby depicting an inter-organelle interplay in the mechanisms of this cell death. However, the role and relationship between these novel non-conventional signalling and the well-accepted canonical pathway in terms of tissue- and/or disease-specific prioritisation is completely unknown. In this review, we provide current knowledge on some necroptotic pathways being not directly associated with RIPK3-MLKL execution and report studies showing the role of respective microRNAs in the regulation of necroptotic injury in the heart and in some other tissues having a high expression of the pro-necroptotic proteins.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Necroptose/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Necrose , Morte Celular/genética , Organelas/metabolismo
6.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37259294

RESUMO

Over the last two decades, a plethora of disease models and human studies have confirmed the beneficial effects of molecular hydrogen (H2), a simple biotherapeutic gas. Recent small-scale studies evaluating the effects of hydrogen-rich water (HRW) on various metabolic conditions pointed to advantageous effects of HRW in regulating blood lipid profiles. However, to the best of the authors' knowledge, no systematic review and/or meta-analysis (SRMA) were published considering HRW consumption and lipid/lipoprotein status. Therefore, the aim of this SRMA was to assess the effects of HRW consumption on blood lipid panel in clinical populations. The search strategy was designed using PRISMA guidelines, and the databases PubMed/Medline, Web of Science, and Scopus were explored from inception until 4 October 2022. A total of seven studies satisfied all the eligibility criteria and were included in SRMA. The results for the pooled meta-analysis showed a significant reduction in total cholesterol, low-density lipoprotein, and triglycerides after HRW intake (p = 0.01), with small to moderate effects (pooled SMD = -0.23 (from -0.40 to 0.05); pooled SMD = -0.22 (from -0.39 to 0.04); pooled SMD = -0.38 (from -0.59 to 0.18), respectively). Our findings indicate that drinking HRW can significantly improve lipid status in the clinical populations. Additional studies are warranted to further validate this connection.

7.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290657

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized, double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2'-deoxyguanosine and malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of molecular hydrogen that occurred prior to the significant clinical improvements reported in previous longer-term studies. The favorable trends in this study in conjunction with previous animal and clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance, or treatment of NAFLD and early stages of NASH are warranted.

8.
J Nutr Biochem ; 98: 108829, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358644

RESUMO

Previous work has shown that dietary flaxseed can significantly reduce cardiac damage from a coronary artery ligation-induced myocardial infarction. However, this model uses healthy animals and the ligation creates the infarct in an artificial manner. The purpose of this study was to determine if dietary flaxseed can protect the hearts of JCR:LA-cp rats, a model of genetic obesity and metabolic syndrome, from naturally occurring myocardial ischemic lesions. Male and female obese rats were randomized into four groups (n = 8 each) to receive, for 12 weeks, either a) control diet (Con), b) control diet supplemented with 10% ground flaxseed (CFlax), c) a high-fat, high sucrose (HFHS) diet, or d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. In male obese rats, serum total cholesterol and LDL-C were significantly lower in CFlax compared to Con.  Obese rats on HFHS exhibited increased myocardial ischemic lesions and diastolic dysfunction regardless of sex. HFlax significantly lowered the frequency of cardiac lesions and improved diastolic function in male and female obese rats compared to HFHS. Blood pressures were similar in obese and lean rats. No aortic atherosclerotic lesions were detectable in any group. Collectively, this study shows that a HFHS diet increased myocardial ischemic lesion frequency and abolished the protective effect of female sex on cardiac function. More importantly, the data demonstrates dietary flaxseed protected against the development of small spontaneous cardiac infarcts despite the ingestion of a HFHS diet and the presence of morbid obesity.


Assuntos
Colesterol/sangue , Linho , Isquemia Miocárdica/prevenção & controle , Obesidade Mórbida/dietoterapia , Animais , Aterosclerose/prevenção & controle , Pressão Sanguínea , Doenças Cardiovasculares/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Feminino , Coração/fisiopatologia , Masculino , Síndrome Metabólica/dietoterapia , Miocárdio/patologia , Ratos , Fatores Sexuais
9.
EXCLI J ; 20: 1106-1117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345230

RESUMO

Colitis is an inflammatory condition of the bowels associated with abdominal pain, diarrhea, fatigue, and fever. Its etiology is multifactorial but related to the overproduction of inflammatory and oxidative mediators. There is currently no cure for this disease, and drugs used to manage it often have deleterious side effects. H2 is recognized as having anti-inflammatory and antioxidant effects, which may qualify it as a novel therapeutic for colitis. We induced an acute model of colitis in mice by administering dextran sulfate sodium (DSS) in drinking water for seven days. Mice were divided into five groups (n=6); normal, colitis, H2-treated colitis, sulfasalazine-treated colitis, and H2 plus sulfasalazine-treated colitis. From days three to ten, mice were given H2, sulfasalazine, or both. H2 was administered via dissolving a hydrogen-generating tablet in water to make hydrogen-rich water (HRW), which was ingested ad libitum and via oral gavage (200 µL). The Disease Activity Index (DAI), histological changes, and markers of inflammation and oxidative stress were assessed. HRW and sulfasalazine significantly improved bodyweight, DAI, mucosal damage, crypt loss, and spleen weight compared to control. Both treatments significantly decreased inflammation (high-sensitive C-reactive protein) and restored redox balance (total thiol, superoxide dismutase, catalase activity). There was a trend for the combination treatment to be more effective than either HRW or sulfasalazine alone. Furthermore, HRW tended to be as effective as, and often more effective than, sulfasalazine. HRW may serve as a therapeutic for ameliorating DSS-induced colitis in mice.

10.
Can J Physiol Pharmacol ; 99(1): 80-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33438486

RESUMO

Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5. In addition, miRNAs were analyzed as potential markers and therapeutically effective molecules. Expression of miRNA-21 and miRNA-15b showed the most significant changes after irradiation. Atorvastatin and tadalafil normalized changes of miRNA (miRNA-1, miRNA-15b, miRNA-21) expression levels in irradiated hearts. This screening study concludes that administration of specific drugs could mitigate the negative impact of radiation on the heart, but more detailed experiments oriented to other aspects of drug effectiveness and their exact mechanisms are still needed.


Assuntos
Atorvastatina/administração & dosagem , Cardiomiopatias/tratamento farmacológico , Coração/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Tadalafila/administração & dosagem , Animais , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Radicais Livres/sangue , Radicais Livres/metabolismo , Raios gama/efeitos adversos , Coração/efeitos da radiação , Masculino , Malondialdeído/sangue , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/diagnóstico , Lesões Experimentais por Radiação/etiologia , Ratos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
11.
Curr Pharm Des ; 27(5): 610-625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32954996

RESUMO

There are many situations of excessive production of reactive oxygen species (ROS) such as radiation, ischemia/reperfusion (I/R), and inflammation. ROS contribute to and arises from numerous cellular pathologies, diseases, and aging. ROS can cause direct deleterious effects by damaging proteins, lipids, and nucleic acids as well as exert detrimental effects on several cell signaling pathways. However, ROS are important in many cellular functions. The injurious effect of excessive ROS can hypothetically be mitigated by exogenous antioxidants, but clinically this intervention is often not favorable. In contrast, molecular hydrogen provides a variety of advantages for mitigating oxidative stress due to its unique physical and chemical properties. H2 may be superior to conventional antioxidants, since it can selectively reduce ●OH radicals while preserving important ROS that are otherwise used for normal cellular signaling. Additionally, H2 exerts many biological effects, including antioxidation, anti-inflammation, anti-apoptosis, and anti-shock. H2 accomplishes these effects by indirectly regulating signal transduction and gene expression, each of which involves multiple signaling pathways and crosstalk. The Keap1-Nrf2-ARE signaling pathway, which can be activated by H2, plays a critical role in regulating cellular redox balance, metabolism, and inducing adaptive responses against cellular stress. H2 also influences the crosstalk among the regulatory mechanisms of autophagy and apoptosis, which involve MAPKs, p53, Nrf2, NF-κB, p38 MAPK, mTOR, etc. The pleiotropic effects of molecular hydrogen on various proteins, molecules and signaling pathways can at least partly explain its almost universal pluripotent therapeutic potential.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Antioxidantes/farmacologia , Humanos , Hidrogênio , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Antioxidants (Basel) ; 9(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333951

RESUMO

The increased production of reactive oxygen species and oxidative stress are important factors contributing to the development of diseases of the cardiovascular and central nervous systems. Molecular hydrogen is recognized as an emerging therapeutic, and its positive effects in the treatment of pathologies have been documented in both experimental and clinical studies. The therapeutic potential of hydrogen is attributed to several major molecular mechanisms. This review focuses on the effects of hydrogen on the cardiovascular and central nervous systems, and summarizes current knowledge about its actions, including the regulation of redox and intracellular signaling, alterations in gene expressions, and modulation of cellular responses (e.g., autophagy, apoptosis, and tissue remodeling). We summarize the functions of hydrogen as a regulator of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated redox signaling and the association of hydrogen with mitochondria as an important target of its therapeutic action. The antioxidant functions of hydrogen are closely associated with protein kinase signaling pathways, and we discuss possible roles of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and Wnt/ß-catenin pathways, which are mediated through glycogen synthase kinase 3ß and its involvement in the regulation of cellular apoptosis. Additionally, current knowledge about the role of molecular hydrogen in the modulation of autophagy and matrix metalloproteinases-mediated tissue remodeling, which are other responses to cellular stress, is summarized in this review.

13.
Biomolecules ; 10(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911872

RESUMO

MicroRNAs (miRNAs/miRs) such as miR-1, miR-133a, miR-133b, miR-135a, and miR-29b play a key role in many cardiac pathological remodeling processes, including apoptosis, fibrosis, and arrhythmias, after a myocardial infarction (MI). Dietary flaxseed has demonstrated a protective effect against an MI. The present study was carried out to test the hypothesis that dietary flaxseed supplementation before and after an MI regulates the expression of above-mentioned miRNAs to produce its cardioprotective effect. Animals were randomized after inducing MI by coronary artery ligation into: (a) sham MI with normal chow, (b) MI with normal chow, and (c-e) MI supplemented with either 10% milled flaxseed, or 4.4% flax oil enriched in alpha-linolenic acid (ALA), or 0.44% flax lignan secoisolariciresinol diglucoside. The feeding protocol consisted of 2 weeks before and 8 weeks after the surgery. Dietary flax oil supplementation selectively upregulated the cardiac expression of miR-133a, miR-135a, and miR-29b. The levels of collagen I expression were reduced in the flax oil group. We conclude that miR-133a, miR-135a, and miR-29b are sensitive to dietary flax oil, likely due to its rich ALA content. The cardioprotective effect of flaxseed in an MI could be due to modulation of these miRNAs.


Assuntos
Linho/química , MicroRNAs/biossíntese , MicroRNAs/genética , Infarto do Miocárdio/prevenção & controle , Ração Animal , Animais , Butileno Glicóis/farmacologia , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/análise , Ácidos Graxos/sangue , Glucosídeos/farmacologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/efeitos dos fármacos , Masculino , MicroRNAs/efeitos dos fármacos , Infarto do Miocárdio/etiologia , Ratos Sprague-Dawley , Sementes/química , Regulação para Cima , Ácido alfa-Linolênico/farmacologia
14.
Diabetes Metab Syndr Obes ; 13: 889-896, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273740

RESUMO

PURPOSE: Metabolic syndrome is associated with several medical risk factors including dyslipidemia, hyperglycemia, and obesity, which has become a worldwide pandemic. The sequelae of this condition increase the risk of cardiovascular and neurological disease and increased mortality. Its pathophysiology is associated with redox dysregulation, excessive inflammation, and perturbation of cellular homeostasis. Molecular hydrogen (H2) may attenuate oxidative stress, improve cellular function, and reduce chronic inflammation. Pre-clinical and clinical studies have shown promising effects of H2-rich water (HRW) on specific features of metabolic syndrome, yet the effects of long-term, high-concentration HRW in this prevalent condition remain poorly addressed. METHODS: We conducted a randomized, double-blinded, placebo-controlled trial in 60 subjects (30 men and 30 women) with metabolic syndrome. An initial observation period of one week was used to acquire baseline clinical data followed by randomization to either placebo or high-concentration HRW (> 5.5 millimoles of H2 per day) for 24 weeks. RESULTS: Supplementation with high-concentration HRW significantly reduced blood cholesterol and glucose levels, attenuated serum hemoglobin A1c, and improved biomarkers of inflammation and redox homeostasis as compared to placebo (P < 0.05). Furthermore, H2 tended to promote a mild reduction in body mass index and waist-to-hip ratio. CONCLUSION: Our results give further credence that high-concentration HRW might have promising effects as a therapeutic modality for attenuating risk factors of metabolic syndrome.

15.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973111

RESUMO

The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection. In this review article, we summarize the current knowledge of the function of these two miRs in the heart, their association with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has already been extensively studied, much remains to be done before research findings can be translated into clinical application for patient's benefit.


Assuntos
Cardiotônicos/uso terapêutico , Cardiopatias/tratamento farmacológico , MicroRNAs/uso terapêutico , Animais , Antineoplásicos/toxicidade , Arritmias Cardíacas/tratamento farmacológico , Biomarcadores , Cardiomiopatias/tratamento farmacológico , Cardiotoxinas , Doenças Cardiovasculares/tratamento farmacológico , Coração , Cardiopatias/induzido quimicamente , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , Humanos , Radioterapia/efeitos adversos
16.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948131

RESUMO

Reactive oxygen species (ROS) are important molecules in the living organisms as a part of many signaling pathways. However, if overproduced, they also play a significant role in the development of cardiovascular diseases, such as arrhythmia, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction and heart transplantation), and heart failure. As a result of oxidative stress action, apoptosis, hypertrophy, and fibrosis may occur. MicroRNAs (miRNAs) represent important endogenous nucleotides that regulate many biological processes, including those involved in heart damage caused by oxidative stress. Oxidative stress can alter the expression level of many miRNAs. These changes in miRNA expression occur mainly via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, calcineurin/nuclear factor of activated T cell (NFAT), or nuclear factor kappa B (NF-κB) pathways. Up until now, several circulating miRNAs have been reported to be potential biomarkers of ROS-related cardiac diseases, including myocardial infarction, hypertrophy, ischemia/reperfusion, and heart failure, such as miRNA-499, miRNA-199, miRNA-21, miRNA-144, miRNA-208a, miRNA-34a, etc. On the other hand, a lot of studies are aimed at using miRNAs for therapeutic purposes. This review points to the need for studying the role of redox-sensitive miRNAs, to identify more effective biomarkers and develop better therapeutic targets for oxidative-stress-related heart diseases.


Assuntos
Cardiomegalia/metabolismo , Doença da Artéria Coronariana/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/genética , Animais , Cardiomegalia/genética , Doença da Artéria Coronariana/genética , Insuficiência Cardíaca/genética , Humanos , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
17.
Can J Physiol Pharmacol ; 98(1): 29-34, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31536712

RESUMO

Mitochondria are the major source of cellular energy metabolism. In the cardiac cells, mitochondria produce by way of the oxidative phosphorylation more than 90% of the energy supply in the form of ATP, which is utilized in many ATP-dependent processes, like cycling of the contractile proteins or maintaining ion gradients. Reactive oxygen species (ROS) are by-products of cellular metabolism and their levels are controlled by intracellular antioxidant systems. Imbalance between ROS and the antioxidant defense leads to oxidative stress and oxidative changes to cellular biomolecules. Molecular hydrogen (H2) has been proved as beneficial in the prevention and therapy of various diseases including cardiovascular disorders. It selectively scavenges hydroxyl radical and peroxynitrite, reduces oxidative stress, and has anti-inflammatory and anti-apoptotic effects. The effect of H2 on the myocardial mitochondrial function and coenzyme Q levels is not well known. In this paper, we demonstrated that consumption of H2-rich water (HRW) resulted in stimulated rat cardiac mitochondrial electron respiratory chain function and increased levels of ATP production by Complex I and Complex II substrates. Similarly, coenzyme Q9 levels in the rat plasma, myocardial tissue, and mitochondria were increased and malondialdehyde level in plasma was reduced after HRW administration. Based on obtained data, we hypothesize a new metabolic pathway of the H2 effect in mitochondria on the Q-cycle and in mitochondrial respiratory chain function. The Q-cycle contains three coenzyme Q forms: coenzyme Q in oxidized form (ubiquinone), radical form (semiquinone), or reduced form (ubiquinol). H2 may be a donor of both electron and proton in the Q-cycle and thus we can suppose stimulation of coenzyme Q production. When ubiquinone is reduced to ubiquinol, lipid peroxidation is reduced. Increased CoQ9 concentration can stimulate electron transport from Complex I and Complex II to Complex III and increase ATP production via mitochondrial oxidative phosphorylation. Our results indicate that H2 may function to prevent/treat disease states with disrupted myocardial mitochondrial function.


Assuntos
Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ubiquinona/análogos & derivados , Animais , Antioxidantes/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/metabolismo
18.
Molecules ; 24(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159153

RESUMO

Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment. Recently, molecular hydrogen has been investigated in preclinical and clinical studies on various diseases associated with oxidative and inflammatory stress such as radiation-induced heart disease, ischemia-reperfusion injury, myocardial and brain infarction, storage of the heart, heart transplantation, etc. Hydrogen is primarily administered via inhalation, drinking hydrogen-rich water, or injection of hydrogen-rich saline. It favorably modulates signal transduction and gene expression resulting in suppression of proinflammatory cytokines, excess ROS production, and in the activation of the Nrf2 antioxidant transcription factor. Although H2 appears to be an important biological molecule with anti-oxidant, anti-inflammatory, and anti-apoptotic effects, the exact mechanisms of action remain elusive. There is no reported clinical toxicity; however, some data suggests that H2 has a mild hormetic-like effect, which likely mediate some of its benefits. The mechanistic data, coupled with the pre-clinical and clinical studies, suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other conditions.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/terapia , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Terapia Combinada , Humanos , Hidrogênio/metabolismo , Hidrogênio/farmacologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Lesões por Radiação/complicações , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
19.
Can J Physiol Pharmacol ; 97(9): 797-807, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30970215

RESUMO

H2 has been clinically demonstrated to provide antioxidant and anti-inflammatory effects, which makes it an attractive agent in exercise medicine. Although exercise provides a multiplicity of benefits including decreased risk of disease, it can also have detrimental effects. For example, chronic high-intensity exercise in elite athletes, or sporadic bouts of exercise (i.e., noxious exercise) in untrained individuals, result in similar pathological factors such as inflammation, oxidation, and cellular damage that arise from and result in disease. Paradoxically, exercise-induced pro-inflammatory cytokines and reactive oxygen species largely mediate the benefits of exercise. Ingestion of conventional antioxidants and anti-inflammatories often impairs exercise-induced training adaptations. Disease and noxious forms of exercise promote redox dysregulation and chronic inflammation, changes that are mitigated by H2 administration. Beneficial exercise and H2 administration promote cytoprotective hormesis, mitochondrial biogenesis, ATP production, increased NAD+/NADH ratio, cytoprotective phase II enzymes, heat-shock proteins, sirtuins, etc. We review the biomedical effects of exercise and those of H2, and we propose that hydrogen may act as an exercise mimetic and redox adaptogen, potentiate the benefits from beneficial exercise, and reduce the harm from noxious exercise. However, more research is warranted to elucidate the potential ergogenic and therapeutic effects of H2 in exercise medicine.


Assuntos
Atletas , Hidrogênio/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Humanos
20.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999630

RESUMO

Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Dieta , Suplementos Nutricionais , MicroRNAs/metabolismo , Animais , Doenças Cardiovasculares/patologia , Modelos Animais de Doenças , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA