Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Mycol J ; 65(1): 7-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417885

RESUMO

Experimental animal models are necessary for research on infectious diseases. Generally, mammalian animals, such as mice, are used for infection experiments. However, there are ethical issues associated with conducting infection experiments in mammals. This has made it difficult to perform infection experiments with a large number of individuals. The invertebrate silkworm, Bombyx mori, is gaining attention as a model animal for infection experiments, and silkworm infection models with various pathogens have been established. This review provides information on the use of silkworm infection models for fungal infection research and evaluation of in vivo biofilm formation by pathogenic fungi using a novel silkworm experimental system. Various silkworm infection models with pathogenic fungi have been used for the development of antifungal drugs and the identification of fungal virulence-related genes. Furthermore, a catheter-material-inserted silkworm infection model was established to evaluate biofilm formation in vivo. Silkworm infection models have contributed to research on fungal infections.


Assuntos
Bombyx , Micoses , Animais , Camundongos , Bombyx/microbiologia , Modelos Animais de Doenças , Fungos , Biofilmes , Mamíferos
2.
Med Mycol ; 61(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37898558

RESUMO

Candida auris is an emerging fungal pathogen that is feared to spread of infection because of its propensity for multidrug resistance and high mortality rate. This pathogenic yeast is classified into four major clades by phylogenetic analyses, which are referred to the South Asia clade (clade I), East Asia clade (clade II), South Africa clade (clade III), and South America clade (clade IV), based on the location of the initial isolate. In this study, we evaluated the virulence of C. auris strains belonging to four major clades and the therapeutic effects of micafungin in a silkworm infection model. The highest mortality rate at 21 h after C. auris inoculation was observed for strains from clade IV (80% or more). In contrast, it was 20% or less in those from other clades. Antifungal susceptibility tests indicated resistance to fluconazole and sensitivity to echinocandins in the blood-derived strains. Micafungin prolonged the survival of blood-derived C. auris infected silkworms. These results suggest that the silkworm infection model is useful for evaluating the virulence of C. auris and determining its therapeutic effects.


Candida auris is an emerging fungal pathogen that has spread worldwide because of its multidrug resistance. We developed a silkworm infection model with C. auris to evaluate the virulence of clinical isolates. An evaluation system using silkworms is useful for determining C. auris virulence.


Assuntos
Bombyx , Candidíase , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micafungina/farmacologia , Candida , Candidíase/microbiologia , Candidíase/veterinária , Candida auris , Virulência , Filogenia , Testes de Sensibilidade Microbiana/veterinária
3.
J Fungi (Basel) ; 9(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504766

RESUMO

Tacrolimus (FK506), an immunosuppressant and calcineurin inhibitor, has fungicidal effects. However, its fungicidal effect is thought to be limited to basidiomycetes, such as Cryptococcus and Malassezia, and not to ascomycetes. FK506 had no fungicidal effect on Candida albicans, C. auris, C. glabrata, C. guilliermondii, C. kefyr, C. krusei, and C. tropicalis (>8 µg/mL); however, C. parapsilosis was susceptible to it at low concentrations of 0.125-0.5 µg/mL. C. metapsilosis and C. orthopsils, previously classified as C. parapsilosis, are molecularly and phylogenetically closely related to C. parapsilosis, but neither species was sensitive to FK506. FK506 increased the mitochondrial reactive oxygen species production and cytoplasmic and mitochondrial calcium concentration and activated metacaspases, nuclear condensation, and DNA fragmentation, suggesting that it induced mitochondria-mediated apoptosis in C. parapsilosis. Elucidating why FK506 exhibits fungicidal activity only against C. parapsilosis will provide new information for developing novel antifungal drugs.

4.
PLoS One ; 18(7): e0288452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450444

RESUMO

Biofilms are formed by microorganisms and their products on the surface of materials such as medical devices. Biofilm formation protects microorganisms from antimicrobial agents. Bacteria and fungi often form dual-species biofilms on the surfaces of medical devices in clinical settings. An experimental system to evaluate in vivo biofilm formation by the pathogenic fungus Candida albicans was established using silkworms inserted with polyurethane fiber (PF), a catheter material. In the present study, we established an in vivo experimental system using silkworms to evaluate the antimicrobial tolerance of Escherichia coli in single- and dual-species biofilms formed on the surface of the PF. The injection of E. coli into the PF-inserted silkworms led to the formation of a biofilm by E. coli on the surface of the PF. E. coli in the biofilm exhibited tolerance to meropenem (MEPM). Furthermore, when E. coli and C. albicans were co-inoculated into the PF-inserted silkworms, a dual-species biofilm formed on the surface of the PF. E. coli in the dual-species biofilm with C. albicans was more tolerant to MEPM than E. coli in the single-species biofilm. These findings suggest the usefulness of an in vivo experimental system using PF-inserted silkworms to investigate the mechanisms of MEPM tolerance in E. coli in single- and dual-species biofilms.


Assuntos
Anti-Infecciosos , Bombyx , Animais , Candida albicans , Escherichia coli , Catéteres , Biofilmes
5.
J Nat Med ; 77(3): 455-463, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36859622

RESUMO

Candidemia is a life-threatening disease common in immunocompromised patients, and is generally caused by the pathogenic fungus Candida albicans. C. albicans can change morphology from yeast to hyphae, forming biofilms on medical devices. Biofilm formation contributes to the virulence and drug tolerance of C. albicans, and thus compounds that suppress this morphological change and biofilm formation are effective for treating and preventing candidemia. Marine organisms produce biologically active and structurally diverse secondary metabolites that are promising lead compounds for treating numerous diseases. In this study, we explored marine-derived fungus metabolites that can inhibit morphological change and biofilm formation by C. albicans. Enniatin B (1), B1 (2), A1 (3), D (4), and E (5), visoltricin (6), ergosterol peroxide (7), 9,11-dehydroergosterol peroxide (8), and 3ß,5α,9α-trihydroxyergosta-7,22-dien-6-one (9) were isolated from the marine-derived fungus Fusarium sp. Compounds 1-5 and 8 exhibited inhibitory activity against hyphal formation by C. albicans, and compounds 1-3 and 8 inhibited biofilm formation by C. albicans. Furthermore, compounds 1-3 decreased cell surface hydrophobicity and expression of the hypha-specific gene HWP1 in C. albicans. Compound 1 was obtained in the highest yield. An in vivo evaluation system using silkworms pierced with polyurethane fibers (a medical device substrate) showed that compound 1 inhibited biofilm formation by C. albicans in vivo. These results indicate that enniatins could be lead compounds for therapeutic agents for biofilm infections by C. albicans.


Assuntos
Candidemia , Fusarium , Humanos , Candida albicans/genética , Antifúngicos/farmacologia , Biofilmes
6.
Microbiol Immunol ; 67(2): 49-57, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36398783

RESUMO

The pathogenic fungus Trichosporon asahii causes fatal deep-seated mycosis in immunocompromised patients. Calcineurin, which is widely conserved in eukaryotes, regulates cell growth and various stress responses in fungi. Tacrolimus (FK506), a calcineurin inhibitor, induces sensitivity to compounds that cause stress on the cell membrane and cell wall integrity. In this study, we demonstrated that FK506 affects stress responses and hyphal formation in T. asahii. In silico structural analysis revealed that amino acid residues in the binding site of the calcineurin-FKBP12 complex that interact with FK506 are conserved in T. asahii. The growth of T. asahii was delayed by FK506 in the presence of SDS or Congo red but not in the presence of calcium chloride. FK506 also inhibited hyphal formation in T. asahii. A mutant deficient of the cnb gene, which encodes the regulatory subunit B of calcineurin, exhibited stress sensitivities on exposure to SDS and Congo red and reduced the hyphal forming ability of T. asahii. In the cnb-deficient mutant, FK506 did not increase the stress sensitivity or reduce hyphal forming ability. These results suggest that FK506 affects stress responses and hyphal formation in T. asahii via the calcineurin signaling pathway.


Assuntos
Calcineurina , Tacrolimo , Tricosporonose , Humanos , Calcineurina/metabolismo , Vermelho Congo , Transdução de Sinais , Tacrolimo/farmacologia , Tacrolimo/metabolismo , Tricosporonose/tratamento farmacológico , Tricosporonose/virologia , Hifas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Inibidores de Calcineurina/farmacologia , Inibidores de Calcineurina/uso terapêutico
7.
Microorganisms ; 10(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363771

RESUMO

Cross-kingdom multi-species biofilms consisting of fungi and bacteria are often resistant to antimicrobial treatment, leading to persistent infections. We evaluated whether the presence of Candida albicans affects the antibacterial tolerance of Escherichia coli in dual-species biofilms and explored the underlying mechanism. We found that the survival of E. coli in the presence of antibacterial drugs was higher in dual-species biofilms compared to single-species biofilms. This tolerance-inducing effect was observed in E. coli biofilms that were treated with a C. albicans culture supernatant. To explore the antibacterial tolerance-inducing factor contained in the culture supernatant and identify the tolerance mechanism, a heated supernatant, a supernatant treated with lyticase, DNase, and proteinase K, or a supernatant added to a drug efflux pump inhibitor were used. However, the tolerance-inducing activity was not lost, indicating the existence of some other mechanisms. Ultrafiltration revealed that the material responsible for tolerance-inducing activity was <10 kDa in size. This factor has not yet been identified and needs further studies to understand the mechanisms of action of this small molecule precisely. Nevertheless, we provide experimental evidence that Candida culture supernatant induces E. coli antibacterial tolerance in biofilms. These findings will guide the development of new treatments for dual-species biofilm infections.

8.
Mycopathologia ; 187(4): 393-396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35610393

RESUMO

Modified Leeming and Notman agar medium (mLNA) has been widely utilized to grow lipophilic fungi belonging to the genus Malassezia. We developed a new artificial-sebum-containing mLNA to obtain higher yields of Malassezia species. The olive oil in mLNA was replaced with an artificial sebum composed of triglyceride (triolein), diglyceride (glyceryl distearate), fatty acids (palmitic acid, myristic acid, pentadecanoic acid, and oleic acid), and squalene. Furthermore, the Tween 60 was replaced with self-emulsifying glyceryl stearate. Nine human-associated Malassezia species grew well on the artificial-sebum-containing mLNA, and the most predominant fungus on human skin, Malassezia restricta, exhibited double wet cell weight in artificial sebum-containing mLNA compared to wet cell weight in standard mLNA.


Assuntos
Malassezia , Ágar , Meios de Cultura , Humanos , Sebo , Pele/microbiologia
9.
Chem Biol Drug Des ; 99(2): 264-276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757664

RESUMO

Alzheimer's disease (AD) causes cognitive impairment in the elderly and is a severe problem worldwide. One of the major reasons for the pathogenesis of AD is thought to be due to the accumulation of amyloid beta (Aß) peptides that result in neuronal cell death in the brain. In this study, bioassay-guided fractionation was performed to develop seed compounds for anti-AD drugs that can act as dual inhibitors of BACE1 and Aß aggregation from secondary metabolites produced by Streptomyces sp. To improve the solubility, the crude extracts were methylated with trimethylsilyl (TMS) diazomethane and then purified to yield polyketides 1-5, including the new compound 1. We synthesized the compounds 6 and 7 (original compounds 2 and 3, respectively), and their activities were evaluated. KS-619-1, the demethylated form of 4 and 5, was isolated and evaluated for its inhibitory activity. The IC50 values for BACE1 and Aß aggregation were found to be 0.48 and 1.1 µM, respectively, indicating that KS-619-1 could be a lead compound for the development of therapeutic agents for AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Policetídeos/farmacologia , Streptomyces/metabolismo , Meios de Cultura , Avaliação Pré-Clínica de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Análise Espectral/métodos
10.
Med Mycol J ; 62(3): 53-57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471035

RESUMO

Rhizopus oryzae causes fatal invasive mucormycosis, especially in immunocompromised patients. Posaconazole is used to treat mucormycosis caused by R. oryzae, which is resistant to fluconazole and voriconazole. We evaluated the efficacy of posaconazole against R. oryzae in vivo using a silkworm infection model at 37℃, the human body temperature. The level of pathogenicity differed among the R. oryzae isolates, and posaconazole prolonged the survival of infected silkworms. Therefore, the silkworm infection model is suitable for investigating the virulence factors of R. oryzae and developing antifungal agents for mucormycosis.


Assuntos
Bombyx , Mucormicose , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Mucormicose/tratamento farmacológico , Rhizopus , Rhizopus oryzae , Triazóis
11.
Med Mycol ; 59(2): 201-205, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32780824

RESUMO

Candida albicans is a pathogenic fungus that causes deep mycosis in immunocompromised patients and forms a biofilm on catheter surfaces. Here we showed that C. albicans infection of silkworms led to biofilm formation on the surface of polyurethane fibers, a catheter substrate material, while inside the silkworm body. Silkworms inserted with polyurethane fibers survived for at least 48 hours. When silkworms inserted with polyurethane fibers were subsequently infected with C. albicans, biofilm formed on the surface of the polyurethane fiber within 24 hours in the silkworm body. These results suggest that silkworms can be used to evaluate C. albicans biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Bombyx/microbiologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Animais , Equipamentos e Provisões/microbiologia , Poliuretanos
12.
Mycoses ; 64(1): 42-47, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32918326

RESUMO

BACKGROUND: Trichosporon asahii is the major causative agent of disseminated and deep-seated trichosporonosis. It is capable of forming biofilms on surfaces, leading to medical device-related infection.Trichosporon asahii may be present as yeast form, hyphae and/or arthroconidia; however, the relationship between its biofilm-forming ability and its morphological transition is unclear. OBJECTIVES: We investigated whether the T. asahii morphological transition contributes to its biofilm formation. We also determined the conditions required to induce each of the morphologies. METHODS: Three high- and three low-biofilm-producing strains (HBS and LBS, respectively) were selected using a biofilm formation assay, and the cell surface hydrophobicity of these six strains was measured. For each strain, the morphology was observed and the number of each morphological form (yeast form, hypha and arthroconidium) was counted to calculate the ratio. Finally, the ability of cells each morphological type to adhere to the polystyrene substrate was evaluated. RESULTS: The HBS exhibited abundant arthroconidia and hyphae; in contrast, the LBS produced mainly hyphae with few or no arthroconidia. The production of hyphae was increased by nitrogen-containing medium, and the production of arthroconidia was increased by nitrogen-deficient medium. Cells incubated under nitrogen-deficient conditions showed higher adherence to a polystyrene surface than those incubated in the presence of nitrogen. CONCLUSION: Arthroconidia of T. asahii play a key role in biofilm formation by promoting cellular adhesion.


Assuntos
Basidiomycota/fisiologia , Biofilmes/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Adesão Celular , Meios de Cultura/química , Interações Hidrofóbicas e Hidrofílicas , Hifas , Nitrogênio , Poliestirenos , Tricosporonose/microbiologia
13.
Int J Syst Evol Microbiol ; 70(8): 4458-4469, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32674752

RESUMO

Four new yeast species belonging to the genus Apiotrichum and two new yeast species belonging to Cutaneotrichosporon are described for strains isolated from guano samples from bat-inhabited caves in Japan. In 2005, we reported these isolates as Trichosporon species based on sequence analyses of the D1/D2 domain of large subunit (LSU) rRNA genes according to available basidiomycetous yeast classification criteria; however, to date, they have not been officially published as new species with descriptions. Their phylogenetic positions have been reanalysed based on comparison of internal transcribed spacer (ITS) region sequences (including the 5.8S rRNA gene) and the D1/D2 domain of the LSU rRNA gene with those of known species; we confirmed clear separation from previously described species. Physiological and biochemical properties of the isolates also suggest their distinctiveness. Therefore, we describe Apiotrichum akiyoshidainum (holotype JCM 12595T), Apiotrichum chiropterorum (JCM 12594T), Apiotrichum coprophilum (JCM 12596T), Apiotrichum otae (JCM 12593T), Cutaneotrichosporon cavernicola (JCM 12590T) and Cutaneotrichosporon middelhovenii (JCM 12592T) as new species. C. cavernicola showed particularly distinctive morphology including large inflated anomalous cells on the hyphae and germination from the cells, although clear clamp connections on the hyphae were not confirmed. Further study is needed to elucidate the morph of this species.


Assuntos
Basidiomycota/classificação , Quirópteros/microbiologia , Fezes/microbiologia , Filogenia , Animais , Basidiomycota/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Japão , Técnicas de Tipagem Micológica , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
14.
BMC Res Notes ; 13(1): 142, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156305

RESUMO

OBJECTIVE: Trichosporon asahii is the major causative fungus of disseminated or deep-seated trichosporonosis and forms a biofilm on medical devices. Biofilm formation leads to antifungal drug resistance, so biofilm-related infections are relatively difficult to treat and infected devices often require surgical removal. Therefore, prevention of biofilm formation is important in clinical settings. In this study, to identify metal cations that affect biofilm formation, we evaluated the effects of cation chelators on biofilm formation in T. asahii. RESULTS: We evaluated the effect of cation chelators on biofilm formation, since microorganisms must assimilate essential nutrients from their hosts to form and maintain biofilms. The inhibition by N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) was greater than those by other cation chelators, such as deferoxamine, triethylenetetramine, and ethylenediaminetetraacetic acid. The inhibitory effect of TPEN was suppressed by the addition of zinc. TPEN also inhibited T. asahii hyphal formation, which is related to biofilm formation, and the inhibition was suppressed by the addition of zinc. These results suggest that zinc is essential for biofilm formation and hyphal formation. Thus, zinc chelators have the potential to be developed into a new treatment for biofilm-related infection caused by T. asahii.


Assuntos
Biofilmes/efeitos dos fármacos , Quelantes/farmacologia , Etilenodiaminas/farmacologia , Hifas/crescimento & desenvolvimento , Trichosporon/fisiologia , Zinco/química , Hifas/efeitos dos fármacos , Trichosporon/efeitos dos fármacos
15.
J Microbiol Methods ; 158: 18-20, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30682384

RESUMO

A rapid detection method for Lactobacillus crispatus and Lactobacillus iners, which are important for maintaining a healthy vaginal environment, was developed using loop-mediated isothermal amplification (LAMP). The LAMP assay had a lower limit of detection of 10 fg DNA and could detect both species within 45 min.


Assuntos
Lactobacillus crispatus/isolamento & purificação , Lactobacillus/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Primers do DNA/genética , Feminino , Humanos , Lactobacillus/genética , Lactobacillus crispatus/genética , Limite de Detecção , RNA Ribossômico 16S/genética , Temperatura
16.
Microbiol Immunol ; 62(9): 607-611, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30106188

RESUMO

The aim of this study was to develop a method for the rapid detection of Gardnerella vaginalis, which is proposed to play a key role in the pathogenesis of bacterial vaginosis. Specific loop-mediated isothermal amplification (LAMP) primers were designed and used to detect target DNA within 45 min under isothermal conditions. Comparative screening indicated that the LAMP assay is superior to PCR in terms of rapidity, and is equivalent in sensitivity and specificity. This LAMP assay can be used for rapid screening and detection of G. vaginalis in vaginal samples; the limit of detection is 10 fg DNA.


Assuntos
Gardnerella vaginalis/isolamento & purificação , Infecções por Bactérias Gram-Positivas/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Adulto , Povo Asiático , Sequência de Bases , Primers do DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Feminino , Gardnerella vaginalis/genética , Gardnerella vaginalis/patogenicidade , Genes Bacterianos/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , RNA Ribossômico 23S/genética , Sensibilidade e Especificidade , Vaginose Bacteriana/diagnóstico , Vaginose Bacteriana/microbiologia , Adulto Jovem
17.
Microbiol Immunol ; 62(6): 405-410, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29704397

RESUMO

Bloodstream infection by the pathogenic fungus Candida albicans is a major health problem. Candidemia is often associated with medical devices, which can act as substrates for biofilm development. Biofilm-related infections are relatively difficult to treat because of their resistance to antimicrobial agents. It is therefore important to explore the mechanisms of biofilm formation. Dimorphism is a major contributor to biofilm formation in C. albicans. To determine whether the hypha-related proteins Pra1 (pH-regulated antigen) and Zrt1 (zinc transporter) are responsible for biofilm formation, the ability of pra1 and zrt1 deletion mutants to form biofilms was investigated. Biofilm formation by both deletion mutants was less than that of the wild-type strain. Because Pra1 and Zrt1 are also related to the zinc homeostasis system, the effects of adding zinc on biofilm formation were also examined. Biofilm formation was increased in the presence of zinc. These data suggest that Pra1 and Zrt1 regulate biofilm formation through zinc homeostasis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Homeostase , Hifas/crescimento & desenvolvimento , Mutação , Fenótipo , Zinco/metabolismo , Zinco/farmacologia
18.
Microb Pathog ; 109: 151-155, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28552809

RESUMO

Candida albicans is one of the most prevalent and clinically important fungal pathogens. The ability to change form depending on environmental stress is an important microbial virulence factor. A survey of compounds that inhibit this morphological change identified various steroids, including 17ß-estradiol. Interestingly, C. albicans has proteins capable of binding to steroids, including estrogen binding protein (Ebp1). Estrogens regulate cell differentiation and proliferation in humans through estrogen receptor proteins. To determine whether EBP1 regulates a virulence factor, we investigated the effect of 17ß-estradiol on the morphological transition of C. albicans using an ebp1 deletion mutant. Treatment with 10 µg/mL of 17ß-estradiol inhibited hypha formation, whereas its effect on the ebp1 deletion mutant was decreased compared to that on the wild-type and revertant strains. These data suggest a new pathway for the yeast-to-hypha transition via EBP1 in C. albicans.


Assuntos
Candida albicans/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Estradiol/análogos & derivados , Antagonistas de Estrogênios/farmacologia , Hifas/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Candida albicans/citologia , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Proteínas de Transporte/química , Proteínas de Transporte/genética , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Estradiol/química , Estrogênios/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Humanos , Hifas/citologia , Hifas/genética , Hifas/crescimento & desenvolvimento , RNA Ribossômico/genética , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Fatores de Virulência/metabolismo
19.
Jpn J Infect Dis ; 70(5): 490-494, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28367877

RESUMO

Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular ß-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Minociclina/farmacologia , Candida albicans/química , Candida albicans/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Propriedades de Superfície , beta-Glucanas/análise
20.
Genome Announc ; 4(4)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27389271

RESUMO

Here, we report the draft genome sequence of Trichosporon domesticum JCM 9580, isolated from the house of a patient with summer-type hypersensitivity pneumonitis (SHP) in Japan. This genomic information will help elucidate the mechanisms of the development of SHP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA