RESUMO
Large-scale (180 × 60 × 1 mm(3)) transmission gratings with groove densities of 1250 and 1740 lines/mm have been developed, resulting in diffraction efficiencies above 95%. The throughput of a folded pulse compressor with two large-scale transmission gratings was approximately 80% in a 20-fs Ti:sapphire chirped-pulse amplification (CPA) laser. The parabolic bending of the transmission grating due to anti-reflection (AR) coating was minimized to 2.9 λ at 633 nm by improving the evaporation process. By a simple analysis, we explain why this level of bending does not induce a wavefront distortion through the transmission grating near the Littrow condition while the wavefront from a reflection grating is distorted to nearly twice the bending of the grating. The calculation based on the measured bending shows that both the group delay difference relative to the ideally flat grating from 750 to 850 nm and the spatial pulse front distortion over a 60-mm-diameter input beam are negligible, even when the dispersive beam covers ~140 mm on the grating. The spatial pulse front distortion measured after the compressor was less than the measurement limit (1.5 fs) for a 20-mm-diameter beam, where the beam size in the dispersive direction on the grating was 85 mm.
RESUMO
Large-scale transmission gratings were produced for a stretcher and a compressor in the Yb-fiber chirped-pulse amplification system. A 23-W, 200-fs laser system with a 10-MHz repetition rate was demonstrated. Focused intensity as high as 10(14) W/cm(2) was achieved, which is high enough for multi-photon processes such as high-order harmonics generation and multi-photon ionization of neutral atoms. High-order harmonics up to 7th order were observed using Xe gas as a nonlinear medium.