Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6505, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090102

RESUMO

The principal effect controlling the oxygen affinity of vertebrate haemoglobins (Hbs) is the allosteric switch between R and T forms with relatively high and low oxygen affinity respectively. Uniquely among jawed vertebrates, crocodilians possess Hb that shows a profound drop in oxygen affinity in the presence of bicarbonate ions. This allows them to stay underwater for extended periods by consuming almost all the oxygen present in the blood-stream, as metabolism releases carbon dioxide, whose conversion to bicarbonate and hydrogen ions is catalysed by carbonic anhydrase. Despite the apparent universal utility of bicarbonate as an allosteric regulator of Hb, this property evolved only in crocodilians. We report here the molecular structures of both human and a crocodilian Hb in the deoxy and liganded states, solved by cryo-electron microscopy. We reveal the precise interactions between two bicarbonate ions and the crocodilian protein at symmetry-related sites found only in the T state. No other known effector of vertebrate Hbs binds anywhere near these sites.


Assuntos
Jacarés e Crocodilos , Bicarbonatos , Microscopia Crioeletrônica , Hemoglobinas , Animais , Jacarés e Crocodilos/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Hemoglobinas/ultraestrutura , Humanos , Regulação Alostérica , Bicarbonatos/metabolismo , Bicarbonatos/química , Modelos Moleculares , Oxigênio/metabolismo , Oxigênio/química , Conformação Proteica
2.
FEBS Open Bio ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123319

RESUMO

Pectocin M1 (PM1), the bacteriocin from phytopathogenic Pectobacterium carotovorum which causes soft rot disease, has a unique ferredoxin domain that allows it to use FusA of the plant ferredoxin uptake system. To probe the structure-based mechanism of PM1 uptake, we determined the X-ray structure of full-length PM1, containing an N-terminal ferredoxin and C-terminal catalytic domain connected by helical linker, at 2.04 Å resolution. Based on published FusA structure and NMR data for PM1 ferredoxin domain titrated with FusA, we modeled docking of the ferredoxin domain with FusA. Combining the docking models with the X-ray structures of PM1 and FusA enables us to propose the mechanism by which PM1 undergoes dynamic domain rearrangement to translocate across the target cell outer membrane.

3.
Nat Commun ; 15(1): 5779, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987535

RESUMO

To the best of our knowledge, enzymes that catalyse intramolecular Diels-Alder ([4+2] cycloaddition) reactions are frequently reported in natural product biosynthesis; however, no native enzymes utilising Lewis acid catalysis have been reported. Verticilactam is a representative member of polycyclic macrolactams, presumably produced by spontaneous cycloaddition. We report that the intramolecular [4+2] cycloadditions can be significantly accelerated by ferredoxins (Fds), a class of small iron-sulphur (Fe-S) proteins. Through iron atom substitution by Lewis acidic gallium (Ga) iron and computational calculations, we confirm that the ubiquitous Fe-S cluster efficiently functions as Lewis acid to accelerate the tandem [4+2] cycloaddition and Michael addition reactions by lowering free energy barriers. Our work highlights Nature's ingenious strategy to generate complex molecule structures using the ubiquitous Fe-S protein. Furthermore, our study sheds light on the future design of Fd as a versatile Lewis acid catalyst for [4+2] cycloaddition reactions.


Assuntos
Produtos Biológicos , Reação de Cicloadição , Proteínas Ferro-Enxofre , Ácidos de Lewis , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Ácidos de Lewis/química , Ácidos de Lewis/metabolismo , Catálise , Ferro/química , Ferro/metabolismo , Lactamas/metabolismo , Lactamas/química , Biocatálise
4.
Chempluschem ; : e202400242, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881532

RESUMO

Single particle cryo electron microscopy (cryo-EM) is now the major method for the determination of integral membrane protein structure. For the success of a given project the type of membrane mimetic used for extraction from the native cell membrane, purification to homogeneity and finally cryo-grid vitrification is crucial. Although small molecule amphiphiles - detergents - are the most widely used membrane mimetic, specific tailoring of detergent structure for single particle cryo-EM is rare and the demand for effective detergents not satisfied. Here, we compare the popular detergent lauryl maltose-neopentyl glycol (LMNG) with the novel detergent neopentyl glycol-derived triglucoside-C11 (NDT-C11) in its behavior as free detergent and when bound to two types of multisubunit membrane protein complexes - cyanobacterial photosystem I (PSI) and mammalian F-ATP synthase. We conclude that NDT-C11 has high potential to become a very useful detergent for single particle cryo-EM of integral membrane proteins.

5.
Database (Oxford) ; 20242024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803272

RESUMO

The Protein Data Bank (PDB) is the global repository for public-domain experimentally determined 3D biomolecular structural information. The archival nature of the PDB presents certain challenges pertaining to updating or adding associated annotations from trusted external biodata resources. While each Worldwide PDB (wwPDB) partner has made best efforts to provide up-to-date external annotations, accessing and integrating information from disparate wwPDB data centers can be an involved process. To address this issue, the wwPDB has established the PDB Next Generation (or NextGen) Archive, developed to centralize and streamline access to enriched structural annotations from wwPDB partners and trusted external sources. At present, the NextGen Archive provides mappings between experimentally determined 3D structures of proteins and UniProt amino acid sequences, domain annotations from Pfam, SCOP2 and CATH databases and intra-molecular connectivity information. Since launch, the PDB NextGen Archive has seen substantial user engagement with over 3.5 million data file downloads, ensuring researchers have access to accurate, up-to-date and easily accessible structural annotations. Database URL: http://www.wwpdb.org/ftp/pdb-nextgen-archive-site.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/química
6.
Structure ; 32(6): 824-837.e1, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490206

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Software
7.
J Mol Biol ; : 168546, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508301

RESUMO

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

8.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328042

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

9.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
10.
ArXiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076521

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

11.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 792-795, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561405

RESUMO

The Protein Data Bank (PDB) is the single global archive of atomic-level, three-dimensional structures of biological macromolecules experimentally determined by macromolecular crystallography, nuclear magnetic resonance spectroscopy or three-dimensional cryo-electron microscopy. The PDB is growing continuously, with a recent rapid increase in new structure depositions from Asia. In 2022, the Worldwide Protein Data Bank (wwPDB; https://www.wwpdb.org/) partners welcomed Protein Data Bank China (PDBc; https://www.pdbc.org.cn) to the organization as an Associate Member. PDBc is based in the National Facility for Protein Science in Shanghai which is associated with the Shanghai Advanced Research Institute of Chinese Academy of Sciences, the Shanghai Institute for Advanced Immunochemical Studies and the iHuman Institute of ShanghaiTech University. This letter describes the history of the wwPDB, recently established mechanisms for adding new wwPDB data centers and the processes developed to bring PDBc into the partnership.


Assuntos
Proteínas , Humanos , Conformação Proteica , Microscopia Crioeletrônica , China , Proteínas/química , Espectroscopia de Ressonância Magnética , Bases de Dados de Proteínas
12.
FEBS Lett ; 597(17): 2149-2160, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400274

RESUMO

Axonemal dynein is an ATP-dependent microtubular motor protein responsible for cilia and flagella beating, and its dysfunction can cause diseases such as primary ciliary dyskinesia and sperm dysmotility. Despite its biological importance, structure-based mechanisms underlying axonemal dynein motors remain unclear. Here, we determined the X-ray crystal structure of the human inner-arm dynein-d (DNAH1) stalk region, which contains a long antiparallel coiled-coil and a microtubule-binding domain (MTBD), at 2.7 Å resolution. Notably, differences in the relative orientation of the coiled-coil and MTBD in comparison with other dyneins, as well as the diverse orientations of the MTBD flap region among various isoforms, lead us to propose a 'spike shoe model' with an altered stepping angle for the interaction between IAD-d and microtubules. Based on these findings, we discuss isoform-specific functions of the axonemal dynein stalk MTBDs.


Assuntos
Dineínas do Axonema , Dineínas , Masculino , Humanos , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Dineínas/metabolismo , Sítios de Ligação , Sêmen , Ligação Proteica , Microtúbulos/metabolismo
13.
Biochim Biophys Acta Bioenerg ; 1864(4): 148986, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270022

RESUMO

Photosystem I (PSI) from the green alga Chlamydomonas reinhardtii, with various numbers of membrane bound antenna complexes (LHCI), has been described in great detail. In contrast, structural characterization of soluble binding partners is less advanced. Here, we used X-ray crystallography and single particle cryo-EM to investigate three structures of the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. An X-ray structure demonstrates the absence of six chlorophylls from the luminal side of the LHCI belts, suggesting these pigments were either physically absent or less stably associated with the complex, potentially influencing excitation transfer significantly. CryoEM revealed extra densities on luminal and stromal sides of the supercomplex, situated in the vicinity of the electron transfer sites. These densities disappeared after the binding of oxidized ferredoxin to PSI-LHCI. Based on these structures, we propose the existence of a PSI-LHCI resting state with a reduced active chlorophyll content, electron donors docked in waiting positions and regulatory binding partners positioned at the electron acceptor site. The resting state PSI-LHCI supercomplex would be recruited to its active form by the availability of oxidized ferredoxin.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo
14.
Curr Res Struct Biol ; 5: 100101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180033

RESUMO

In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical ß-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.

15.
Biophys Physicobiol ; 20(1): e200008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234853

RESUMO

Ciliary bending movements are powered by motor protein axonemal dyneins. They are largely classified into two groups, inner-arm dynein and outer-arm dynein. Outer-arm dynein, which is important for the elevation of ciliary beat frequency, has three heavy chains (α, ß, and γ), two intermediate chains, and more than 10 light chains in green algae, Chlamydomonas. Most of intermediate chains and light chains bind to the tail regions of heavy chains. In contrast, the light chain LC1 was found to bind to the ATP-dependent microtubule-binding domain of outer-arm dynein γ-heavy chain. Interestingly, LC1 was also found to interact with microtubules directly, but it reduces the affinity of the microtubule-binding domain of γ-heavy chain for microtubules, suggesting the possibility that LC1 may control ciliary movement by regulating the affinity of outer-arm dyneins for microtubules. This hypothesis is supported by the LC1 mutant studies in Chlamydomonas and Planaria showing that ciliary movements in LC1 mutants were disordered with low coordination of beating and low beat frequency. To understand the molecular mechanism of the regulation of outer-arm dynein motor activity by LC1, X-ray crystallography and cryo-electron microscopy have been used to determine the structure of the light chain bound to the microtubule-binding domain of γ-heavy chain. In this review article, we show the recent progress of structural studies of LC1, and suggest the regulatory role of LC1 in the motor activity of outer-arm dyneins. This review article is an extended version of the Japanese article, The Complex of Outer-arm Dynein Light Chain-1 and the Microtubule-binding Domain of the Heavy Chain Shows How Axonemal Dynein Tunes Ciliary Beating, published in SEIBUTSU BUTSURI Vol. 61, p. 20-22 (2021).

16.
Chem Sci ; 14(14): 3932-3937, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37035687

RESUMO

We repurposed the metal-binding site of a cupin superfamily protein into the 2-His-1-carboxylate facial triad, which is one of the common motifs in natural non-heme enzymes, to construct artificial metalloenzymes that can catalyze new-to-nature reactions. The Cu2+-H52A/H58E variant catalyzed the stereoselective Michael addition reaction and was found to bear a flexible metal-binding site in the high-resolution crystal structure. Furthermore, the H52A/H58E/F104W mutant accommodated a water molecule, which was supported by Glu58 and Trp104 residues via hydrogen bonding, presumably leading to high stereoselectivity. Thus, the 2-His-1-carboxylate facial triad was confirmed to be a versatile and promising metal-binding motif for abiological and canonical biological reactions.

17.
J Mol Biol ; 435(14): 168021, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828268

RESUMO

ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crystallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data framework for representing computed structure models (CSMs) accelerates the pace of scientific discovery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and processes for maintaining and extending the data standard. Community tools and software libraries that support ModelCIF are also described.


Assuntos
Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Software
18.
Nucleic Acids Res ; 51(D1): D368-D376, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36478084

RESUMO

The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).


Assuntos
Bases de Dados de Compostos Químicos , Espectroscopia de Ressonância Magnética , Bases de Dados de Proteínas , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
19.
Biophys Rev ; 14(6): 1233-1238, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532871

RESUMO

Prof. Haruki Nakamura, who is the former head of Protein Data Bank Japan (PDBj) and an expert in computational biology, retired from Osaka University at the end of March 2018. He founded PDBj at the Institute for Protein Research, together with other faculty members, researchers, engineers, and annotators in 2000, and subsequently established the worldwide Protein Data Bank (wwPDB) in 2003 to manage the core archive of the Protein Data Bank (PDB), collaborating with RCSB-PDB in the USA and PDBe in Europe. As the former head of PDBj and also an expert in structural bioinformatics, he has grown PDBj to become a well-known data center within the structural biology community and developed several related databases, tools and integrated with new technologies, such as the semantic web, as primary services offered by PDBj.

20.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555561

RESUMO

"Plant-type" ferredoxins (Fds) in the thylakoid membranes of plants, algae, and cyanobacteria possess a single [2Fe-2S] cluster in active sites and mediate light-induced electron transfer from Photosystem I reaction centers to various Fd-dependent enzymes. Structural knowledge of plant-type Fds is relatively limited to static structures, and the detailed behavior of oxidized and reduced Fds has not been fully elucidated. It is important that the investigations of the effects of active-center reduction on the structures and dynamics for elucidating electron-transfer mechanisms. In this study, model systems of oxidized and reduced Fds were constructed from the high-resolution crystal structure of Chlamydomonas reinhardtii Fd1, and three 200 ns molecular dynamics simulations were performed for each system. The force field parameters of the oxidized and reduced active centers were independently obtained using quantum chemical calculations. There were no substantial differences in the global conformations of the oxidized and reduced forms. In contrast, active-center reduction affected the hydrogen-bond network and compactness of the surrounding residues, leading to the increased flexibility of the side chain of Phe61, which is essential for the interaction between Fd and the target protein. These computational results will provide insight into the electron-transfer mechanisms in the Fds.


Assuntos
Cianobactérias , Ferredoxinas , Ferredoxinas/metabolismo , Simulação de Dinâmica Molecular , Transporte de Elétrons , Cianobactérias/metabolismo , Plantas/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA