RESUMO
BACKGROUND AND PURPOSE: Intra-arterial thrombolytics may be used to treat distal vessel occlusions, which cause incomplete reperfusion following mechanical thrombectomy. Because immediate reperfusion after intra-arterial thrombolytics occurs rarely, the aim of this study was to assess the delayed effect of intra-arterial thrombolytics using follow-up perfusion imaging. MATERIALS AND METHODS: We included patients from a prospective stroke registry (February 2015 to September 2022) who had undergone mechanical thrombectomy and had incomplete reperfusion (expanded TICI 2a-2c) and available 24 hour perfusion imaging. Perfusion imaging was rated as delayed reperfusion if time-sensitive perfusion maps did not show wedge-shaped delays suggestive of persisting occlusions corresponding to the post-mechanical thrombectomy angiographic deficit. Patients treated with intra-arterial thrombolytics were compared with controls using multivariable logistic regression and inverse probability of treatment weighting matching for baseline differences and factors associated with delayed reperfusion. RESULTS: The median age of the final study population (n = 459) was 74 years (interquartile range, 63-81 years), and delayed reperfusion occurred in 61% of cases. Patients treated with additional intra-arterial thrombolytics (n = 40) were younger and had worse expanded TICI scores. After matching was performed, intra-arterial thrombolytics was associated with higher rates of delayed reperfusion (adjusted OR = 2.7; 95% CI, 1.1-6.4) and lower rates of new infarction in the residually hypoperfused territory after mechanical thrombectomy (adjusted OR = 0.3; 95% CI, 0.1-0.7). No difference was found in the rates of functional independence (90-day mRS, 0-2; adjusted OR = 1.4; 95% CI, 0.4-4.1). CONCLUSIONS: Rescue intra-arterial thrombolytics is associated with delayed reperfusion of remaining vessel occlusions following incomplete mechanical thrombectomy. The value of intra-arterial thrombolytics as a potential therapy for incomplete reperfusions after mechanical thrombectomy should be assessed in the setting of randomized controlled trials.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Resultado do Tratamento , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/cirurgia , Trombectomia/métodos , Fibrinolíticos/uso terapêutico , Reperfusão/métodos , Terapia Trombolítica , Isquemia Encefálica/terapia , Estudos RetrospectivosRESUMO
BACKGROUND AND PURPOSE: Flat panel detector CT imaging allows simultaneous acquisition of multiphase flat panel CTA and flat panel CTP imaging directly in the angio suite. We compared collateral assessment derived from multiphase flat panel CTA and flat panel CTP with collateral assessment derived from DSA as the gold-standard. MATERIALS AND METHODS: We performed a retrospective analysis of patients with occlusion of the first or second segment of the MCA who underwent pre-interventional flat panel detector CT. The hypoperfusion intensity ratio as a correlate of collateral status was calculated from flat panel CTP (time-to-maximum > 10 seconds volume/time-to-maximum > 6 seconds volume). Intraclass correlation coefficients were calculated for interrater reliability for the Calgary/Menon score for multiphase flat panel CTA and for the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) score for DSA collateral scores. Correlations of the hypoperfusion intensity ratio, multiphase flat panel CTA score, and the ASITN/SIR score were calculated using the Spearman correlation. RESULTS: From November 2019 to February 2020, thirty patients were included. Moderate interrater reliability was achieved for the ASITN/SIR DSA score (0.68; 95% CI, 0.50-0.82) as well as for the Calgary/Menon multiphase flat panel CTA score (0.53; 95% CI, 0.29-0.72). We found a strong correlation between the ASITN/SIR DSA and Calgary/Menon multiphase flat panel CTA score (ρ = 0.54, P = .002) and between the hypoperfusion intensity ratio and the Calgary/Menon multiphase flat panel CTA score (ρ = -0.57, P < .001). The correlation was moderate between the hypoperfusion intensity ratio and the ASITN/SIR DSA score (ρ = -0.49, P = .006). The infarct core volume correlated strongly with the Calgary/Menon multiphase flat panel CTA score (ρ = -0.66, P < .001) and the hypoperfusion intensity ratio (ρ = 0.76, P < .001) and correlated moderately with the ASITN/SIR DSA score (ρ = -0.46, P = .01). CONCLUSIONS: The Calgary/Menon multiphase flat panel CTA score and the hypoperfusion intensity ratio correlated with each other and with the ASITN/SIR DSA score as the gold-standard. In our cohort, the collateral scoring derived from flat panel detector CT was clinically reliable.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Encéfalo , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/terapia , Angiografia Cerebral/métodos , Circulação Colateral , Angiografia por Tomografia Computadorizada/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapiaRESUMO
BACKGROUND AND PURPOSE: Assessment of cerebral venous sinus thrombosis on MR imaging can be challenging. The aim of this study was to evaluate the diagnostic accuracy of high-resolution 3D T2 sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE) in patients with cerebral venous sinus thrombosis and to compare its performance with contrast-enhanced 3D T1-MPRAGE. MATERIALS AND METHODS: We performed a blinded retrospective analysis of T2-SPACE and contrast-enhanced MPRAGE sequences from patients with cerebral venous sinus thrombosis and a control group. The results were compared with a reference standard, which was based on all available sequences and clinical history. Subanalyses were performed according to the venous segment involved and the clinical stage of the thrombus. RESULTS: Sixty-three MR imaging examinations from 35 patients with cerebral venous sinus thrombosis and 51 examinations from 40 control subjects were included. The accuracy, sensitivity, and specificity calculated from the initial MR imaging examination for each patient were 100% each for T2-SPACE and 95%, 91%, and 98%, respectively, for contrast-enhanced MPRAGE. The interrater reliability was high for both sequences. In the subanalysis, the accuracy for each venous segment involved and if subdivided according to the clinical stage of thrombus was ≥95% and ≥85% for T2-SPACE and contrast-enhanced MPRAGE, respectively. CONCLUSIONS: Both T2-SPACE and contrast-enhanced MPRAGE offer high accuracy for the detection and exclusion of cerebral venous sinus thrombosis; however, T2-SPACE showed a better overall performance and thus could be a useful tool if included in a multiparametric MR imaging protocol for the diagnosis of cerebral venous sinus thrombosis, especially in scenarios where gadolinium administration is contraindicated.