Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(10): 1278-1286, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690676

RESUMO

Metallo-ß-lactamases (MBL) deactivate ß-lactam antibiotics through a catalytic reaction caused by two zinc ions at the active center. Since MBLs deteriorate a wide range of antibiotics, they are dangerous factors for bacterial multidrug resistance. In this work, organic synthesis, computational design, and crystal structure analysis were performed to obtain potent MBL inhibitors based on a previously identified hit compound. The hit compound comprised 3,4-dihydro-2(1H)-quinolinone linked with a phenyl-ether-methyl group via a thiazole ring. In the first step, the thiazole ring was replaced with a tertiary amine to avoid the planar structure. In the second step, we virtually modified the compound by keeping the quinolinone backbone. Every modified compound was bound to a kind of MBL, imipenemase-1 (IMP-1), and the binding pose was optimized by a molecular mechanics calculation. The binding scores were evaluated for the respective optimized binding poses. Given the predicted binding poses and calculated binding scores, candidate compounds were determined for organic syntheses. The inhibitory activities of the synthesized compounds were measured by an in vitro assay for two kinds of MBLs, IMP-1 and New Delhi metallo-ß-lactamase (NDM-1). A quinolinone connected with an amine bound with methyl-phenyl-ether-propyl and cyclohexyl-ethyl showed a 50% inhibitory concentration of 4.8 µM. An X-ray crystal analysis clarified the binding structure of a synthesized compound to IMP-1. The δ-lactam ring of quinolinone was hydrolyzed, and the generated carboxyl group was coordinated with zinc ions. The findings on the chemical structure and binding pose are expected to be a base for developing MBL inhibitors.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Cristalografia por Raios X , Desenho de Fármacos , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/metabolismo
2.
Chem Pharm Bull (Tokyo) ; 69(12): 1179-1183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853284

RESUMO

Metallo-ß-lactamases (MBLs) are significant threats to humans because they deteriorate many kinds of ß-lactam antibiotics and are key enzymes responsible for multi-drug resistance of bacterial pathogens. As a result of in vitro screening, two compounds were identified as potent inhibitors of two kinds of MBLs: imipenemase (IMP-1) and New Delhi metallo-ß-lactamase (NDM-1). The binding structure of one of the identified compounds was clarified by an X-ray crystal analysis in complex with IMP-1, in which two possible binding poses were observed. Molecular dynamics (MD) simulations were performed by building two calculation models from the respective binding poses. The compound was stably bound to the catalytic site during the simulation in one pose. The binding model between NDM-1 and the compound was constructed for MD simulation. Calculation results for NDM-1 were similar to those of IMP-1. The simulation suggested that the binding of the identified inhibitory compound was also durable in the catalytic site of NDM-1. The compound will be a sound basis for the development of the inhibitors for MBLs.


Assuntos
Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de beta-Lactamases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA